{"title":"评估一种新兴的非卤化阻燃剂三聚氰胺氰脲酸酯与一种普遍存在的卤化同系物四溴苯酐的溶解度、化学稳定性和生态毒理学","authors":"N. Masud , P. Hansal , B.D. Ward , J. Cable","doi":"10.1016/j.aquatox.2025.107537","DOIUrl":null,"url":null,"abstract":"<div><div>Concerns over plastic-associated chemical toxicity are increasing amid the plastic pollution crisis. Halogenated flame retardants, though effective in plastic development, are being phased out due to toxicity, while nitrogen-based alternatives, such as melamine cyanurate (MC), are considered more chemically stable and less toxic. Here, we assess the solubility and chemical stability of MC in freshwater using various solvents and evaluate degradation after UV exposure. Additionally, we compare the acute and chronic aquatic toxicity of MC to the more widespread halogenated flame retardant tetrabromophthalic anhydride (TBA) using the <em>Daphnia magna</em> invertebrate model. Toxicity of a common solvent, dimethyl sulfoxide (DMSO), was also assessed. MC was insoluble in 16 of 18 tested solvents, with solubility only seen in a strong acid and base. UV exposure for 72 h within freshwater media indicated minimal degradation, classifying MC as a highly stable compound. Acute toxicity tests at 1–20 mg/L showed no significant difference in EC<sub>50</sub> values between TBA (0.16 - 11.46 mg/L) and MC (5.91 - 13.23 mg/L). Chronic toxicity tests at 0.5, 5, and 15 mg/L yielded NOEC values of ≤5 mg/L for TBA and <5 mg/L for MC. At 15 mg/L, chronic exposure to TBA, MC, and DMSO resulted in 100% mortality in <em>D. magna</em>. These findings challenge the assumption that DMSO is a low-toxicity solvent in aquatic testing. Overall, the study highlights the difficulty in assessing the toxicity of highly stable flame retardants like MC, while indicating that they may exhibit similar aquatic toxicity as halogenated congeners.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"287 ","pages":"Article 107537"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the solubility, chemical stability and ecotoxicology of an emerging non-halogenated flame retardant, melamine cyanurate, against a prevalent halogenated congener, tetrabromophthalic anhydride\",\"authors\":\"N. Masud , P. Hansal , B.D. Ward , J. Cable\",\"doi\":\"10.1016/j.aquatox.2025.107537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Concerns over plastic-associated chemical toxicity are increasing amid the plastic pollution crisis. Halogenated flame retardants, though effective in plastic development, are being phased out due to toxicity, while nitrogen-based alternatives, such as melamine cyanurate (MC), are considered more chemically stable and less toxic. Here, we assess the solubility and chemical stability of MC in freshwater using various solvents and evaluate degradation after UV exposure. Additionally, we compare the acute and chronic aquatic toxicity of MC to the more widespread halogenated flame retardant tetrabromophthalic anhydride (TBA) using the <em>Daphnia magna</em> invertebrate model. Toxicity of a common solvent, dimethyl sulfoxide (DMSO), was also assessed. MC was insoluble in 16 of 18 tested solvents, with solubility only seen in a strong acid and base. UV exposure for 72 h within freshwater media indicated minimal degradation, classifying MC as a highly stable compound. Acute toxicity tests at 1–20 mg/L showed no significant difference in EC<sub>50</sub> values between TBA (0.16 - 11.46 mg/L) and MC (5.91 - 13.23 mg/L). Chronic toxicity tests at 0.5, 5, and 15 mg/L yielded NOEC values of ≤5 mg/L for TBA and <5 mg/L for MC. At 15 mg/L, chronic exposure to TBA, MC, and DMSO resulted in 100% mortality in <em>D. magna</em>. These findings challenge the assumption that DMSO is a low-toxicity solvent in aquatic testing. Overall, the study highlights the difficulty in assessing the toxicity of highly stable flame retardants like MC, while indicating that they may exhibit similar aquatic toxicity as halogenated congeners.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"287 \",\"pages\":\"Article 107537\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X25003017\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25003017","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Assessing the solubility, chemical stability and ecotoxicology of an emerging non-halogenated flame retardant, melamine cyanurate, against a prevalent halogenated congener, tetrabromophthalic anhydride
Concerns over plastic-associated chemical toxicity are increasing amid the plastic pollution crisis. Halogenated flame retardants, though effective in plastic development, are being phased out due to toxicity, while nitrogen-based alternatives, such as melamine cyanurate (MC), are considered more chemically stable and less toxic. Here, we assess the solubility and chemical stability of MC in freshwater using various solvents and evaluate degradation after UV exposure. Additionally, we compare the acute and chronic aquatic toxicity of MC to the more widespread halogenated flame retardant tetrabromophthalic anhydride (TBA) using the Daphnia magna invertebrate model. Toxicity of a common solvent, dimethyl sulfoxide (DMSO), was also assessed. MC was insoluble in 16 of 18 tested solvents, with solubility only seen in a strong acid and base. UV exposure for 72 h within freshwater media indicated minimal degradation, classifying MC as a highly stable compound. Acute toxicity tests at 1–20 mg/L showed no significant difference in EC50 values between TBA (0.16 - 11.46 mg/L) and MC (5.91 - 13.23 mg/L). Chronic toxicity tests at 0.5, 5, and 15 mg/L yielded NOEC values of ≤5 mg/L for TBA and <5 mg/L for MC. At 15 mg/L, chronic exposure to TBA, MC, and DMSO resulted in 100% mortality in D. magna. These findings challenge the assumption that DMSO is a low-toxicity solvent in aquatic testing. Overall, the study highlights the difficulty in assessing the toxicity of highly stable flame retardants like MC, while indicating that they may exhibit similar aquatic toxicity as halogenated congeners.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.