MgSO4的动力学。6h2o脱水反应在低温热化学储能中的应用

IF 7.1 Q1 ENGINEERING, CHEMICAL
Tobias Niederkofler , Aldo Giovannini , Roman Lackner
{"title":"MgSO4的动力学。6h2o脱水反应在低温热化学储能中的应用","authors":"Tobias Niederkofler ,&nbsp;Aldo Giovannini ,&nbsp;Roman Lackner","doi":"10.1016/j.ceja.2025.100814","DOIUrl":null,"url":null,"abstract":"<div><div>Transitioning to renewable energy systems for residential thermal energy supply requires replacing carbon-based technologies. However, renewable energy generation is inherently intermittent, leading to supply–demand mismatches that reduce efficiency. Long-term storage solutions are essential to bridge these gaps and ensure a reliable thermal energy supply. Magnesium sulfate shows promising behavior as a thermochemical energy storage material, but its practical implementation is limited by kinetic constraints. This study models the dehydration reaction of <figure><img></figure> up to a temperature of 150<!--> <!-->°C, a temperature range compatible with solar thermal collectors, using thermogravimetric analysis at a water vapor pressure of 12<!--> <!-->hPa. Through a differential isoconversional method, the reaction from hexahydrate to monohydrate is examined to detect intermediate reaction steps. Moreover, the study identifies an appropriate reaction model and analyzes the dependence of the reaction rate on temperature and pressure. The resulting model shows strong alignment with experimental data, providing valuable insight into the dehydration kinetics of magnesium sulfate under realistic operating conditions and advancing renewable energy storage solutions.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"23 ","pages":"Article 100814"},"PeriodicalIF":7.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of the MgSO4 . 6H2Odehydration reaction for low-temperature thermochemical energy storage applications\",\"authors\":\"Tobias Niederkofler ,&nbsp;Aldo Giovannini ,&nbsp;Roman Lackner\",\"doi\":\"10.1016/j.ceja.2025.100814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transitioning to renewable energy systems for residential thermal energy supply requires replacing carbon-based technologies. However, renewable energy generation is inherently intermittent, leading to supply–demand mismatches that reduce efficiency. Long-term storage solutions are essential to bridge these gaps and ensure a reliable thermal energy supply. Magnesium sulfate shows promising behavior as a thermochemical energy storage material, but its practical implementation is limited by kinetic constraints. This study models the dehydration reaction of <figure><img></figure> up to a temperature of 150<!--> <!-->°C, a temperature range compatible with solar thermal collectors, using thermogravimetric analysis at a water vapor pressure of 12<!--> <!-->hPa. Through a differential isoconversional method, the reaction from hexahydrate to monohydrate is examined to detect intermediate reaction steps. Moreover, the study identifies an appropriate reaction model and analyzes the dependence of the reaction rate on temperature and pressure. The resulting model shows strong alignment with experimental data, providing valuable insight into the dehydration kinetics of magnesium sulfate under realistic operating conditions and advancing renewable energy storage solutions.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"23 \",\"pages\":\"Article 100814\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125001115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125001115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

向住宅热能供应的可再生能源系统过渡需要取代碳基技术。然而,可再生能源发电本质上是间歇性的,导致供需不匹配,降低了效率。长期储存解决方案对于弥合这些差距和确保可靠的热能供应至关重要。硫酸镁作为一种热化学储能材料表现出良好的性能,但其实际应用受到动力学约束的限制。本研究采用热重分析法,在水蒸气压力为12 hPa的条件下,模拟了高达150°C(与太阳能集热器兼容的温度范围)的脱水反应。通过微分等转化法,考察了六水化合物到一水化合物的反应,以检测中间反应步骤。确定了合适的反应模型,分析了反应速率对温度和压力的依赖性。所得模型与实验数据高度一致,为实际操作条件下硫酸镁的脱水动力学提供了有价值的见解,并推进了可再生能源存储解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kinetics of the MgSO4 . 6H2Odehydration reaction for low-temperature thermochemical energy storage applications

Kinetics of the MgSO4 . 6H2Odehydration reaction for low-temperature thermochemical energy storage applications
Transitioning to renewable energy systems for residential thermal energy supply requires replacing carbon-based technologies. However, renewable energy generation is inherently intermittent, leading to supply–demand mismatches that reduce efficiency. Long-term storage solutions are essential to bridge these gaps and ensure a reliable thermal energy supply. Magnesium sulfate shows promising behavior as a thermochemical energy storage material, but its practical implementation is limited by kinetic constraints. This study models the dehydration reaction of
up to a temperature of 150 °C, a temperature range compatible with solar thermal collectors, using thermogravimetric analysis at a water vapor pressure of 12 hPa. Through a differential isoconversional method, the reaction from hexahydrate to monohydrate is examined to detect intermediate reaction steps. Moreover, the study identifies an appropriate reaction model and analyzes the dependence of the reaction rate on temperature and pressure. The resulting model shows strong alignment with experimental data, providing valuable insight into the dehydration kinetics of magnesium sulfate under realistic operating conditions and advancing renewable energy storage solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信