使用形式概念分析和Dempster-Shafer理论的灵活分类

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Marcel Boersma , Krishna Manoorkar , Alessandra Palmigiano , Mattia Panettiere , Apostolos Tzimoulis , Nachoem Wijnberg
{"title":"使用形式概念分析和Dempster-Shafer理论的灵活分类","authors":"Marcel Boersma ,&nbsp;Krishna Manoorkar ,&nbsp;Alessandra Palmigiano ,&nbsp;Mattia Panettiere ,&nbsp;Apostolos Tzimoulis ,&nbsp;Nachoem Wijnberg","doi":"10.1016/j.ijar.2025.109548","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the intuitive idea that sets of objects or entities can be categorized in very different ways, and that some ways to categorise objects are better than others, depending on the purpose of the categorization, in this paper, a formal framework is introduced for parametrically generating a space of possible categorizations of a set of objects, based on the features which individual agents or groups thereof regard as relevant (formally encoded in the notion of <em>interrogative agenda</em>). This formal framework accounts both for two-valued (crisp), and for many-valued (fuzzy) judgments about the relevance of given features, and introduces ways to aggregate individual agendas to group agendas. As an application on this framework, we discuss a machine-learning meta-algorithm for outlier detection and classification which provides local and global explanations of its results.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109548"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible categorization using formal concept analysis and Dempster-Shafer theory\",\"authors\":\"Marcel Boersma ,&nbsp;Krishna Manoorkar ,&nbsp;Alessandra Palmigiano ,&nbsp;Mattia Panettiere ,&nbsp;Apostolos Tzimoulis ,&nbsp;Nachoem Wijnberg\",\"doi\":\"10.1016/j.ijar.2025.109548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the intuitive idea that sets of objects or entities can be categorized in very different ways, and that some ways to categorise objects are better than others, depending on the purpose of the categorization, in this paper, a formal framework is introduced for parametrically generating a space of possible categorizations of a set of objects, based on the features which individual agents or groups thereof regard as relevant (formally encoded in the notion of <em>interrogative agenda</em>). This formal framework accounts both for two-valued (crisp), and for many-valued (fuzzy) judgments about the relevance of given features, and introduces ways to aggregate individual agendas to group agendas. As an application on this framework, we discuss a machine-learning meta-algorithm for outlier detection and classification which provides local and global explanations of its results.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"187 \",\"pages\":\"Article 109548\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001896\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001896","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于对象或实体的直观想法集可以以非常不同的方式分类,和一些方法归类对象比别人好,根据分类的目的,本文介绍了一个正式的框架为参数化生成空间可能的一组对象的分类,根据其特性个体或团体认为相关(正式编码在疑问议程的概念)。这个正式的框架解释了关于给定特征相关性的双值(清晰)和多值(模糊)判断,并引入了将个人议程聚合到组议程的方法。作为该框架的应用,我们讨论了一种用于异常值检测和分类的机器学习元算法,该算法为其结果提供了局部和全局解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible categorization using formal concept analysis and Dempster-Shafer theory
Based on the intuitive idea that sets of objects or entities can be categorized in very different ways, and that some ways to categorise objects are better than others, depending on the purpose of the categorization, in this paper, a formal framework is introduced for parametrically generating a space of possible categorizations of a set of objects, based on the features which individual agents or groups thereof regard as relevant (formally encoded in the notion of interrogative agenda). This formal framework accounts both for two-valued (crisp), and for many-valued (fuzzy) judgments about the relevance of given features, and introduces ways to aggregate individual agendas to group agendas. As an application on this framework, we discuss a machine-learning meta-algorithm for outlier detection and classification which provides local and global explanations of its results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信