碲对环境的影响:从铜矿开采到薄膜太阳能组件

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Francis Hanna, Annick Anctil
{"title":"碲对环境的影响:从铜矿开采到薄膜太阳能组件","authors":"Francis Hanna,&nbsp;Annick Anctil","doi":"10.1016/j.solmat.2025.113898","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium-telluride (CdTe) is the leading thin-film solar technology, holding 21 % of the US market. The demand for tellurium will rise in the US as domestic CdTe production is expected to reach 14 GW by 2027. Over the past decade, the US has begun domestic tellurium production and reduced import reliance from 95 % to less than 25 %. This shift presents an opportunity to minimize the environmental impact of tellurium production. Tellurium is primarily recovered from copper anode slimes via chemical- or heat-based extraction methods. Previous studies use life cycle assessment to evaluate the environmental impact of tellurium. However, these studies model anode slime treatment using electronic scrap processing data as a proxy, which does not accurately reflect commercial processes, and as a result, offers misleading insights for decision-makers. To address this gap, the current study uses life cycle assessment to estimate the environmental footprint of tellurium production via hydro- and hydro-pyrometallurgical processing in China, Canada, Japan, and USA. This work highlights the effect of the tellurium production method and location on the environmental impact of tellurium and CdTe solar modules. The results show that previous estimates underestimate the carbon footprint of semiconductor-grade tellurium by up to 46 %. The literature also underestimates freshwater toxicity and the abiotic depletion potential of CdTe solar modules by 35 % and 50 %, respectively. Finally, producing tellurium via anode slime hydro-pyrometallurgical treatment in the US leads to the lowest environmental impact of US-made CdTe solar modules.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"294 ","pages":"Article 113898"},"PeriodicalIF":6.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental impact of tellurium: From copper mining to thin film solar modules\",\"authors\":\"Francis Hanna,&nbsp;Annick Anctil\",\"doi\":\"10.1016/j.solmat.2025.113898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cadmium-telluride (CdTe) is the leading thin-film solar technology, holding 21 % of the US market. The demand for tellurium will rise in the US as domestic CdTe production is expected to reach 14 GW by 2027. Over the past decade, the US has begun domestic tellurium production and reduced import reliance from 95 % to less than 25 %. This shift presents an opportunity to minimize the environmental impact of tellurium production. Tellurium is primarily recovered from copper anode slimes via chemical- or heat-based extraction methods. Previous studies use life cycle assessment to evaluate the environmental impact of tellurium. However, these studies model anode slime treatment using electronic scrap processing data as a proxy, which does not accurately reflect commercial processes, and as a result, offers misleading insights for decision-makers. To address this gap, the current study uses life cycle assessment to estimate the environmental footprint of tellurium production via hydro- and hydro-pyrometallurgical processing in China, Canada, Japan, and USA. This work highlights the effect of the tellurium production method and location on the environmental impact of tellurium and CdTe solar modules. The results show that previous estimates underestimate the carbon footprint of semiconductor-grade tellurium by up to 46 %. The literature also underestimates freshwater toxicity and the abiotic depletion potential of CdTe solar modules by 35 % and 50 %, respectively. Finally, producing tellurium via anode slime hydro-pyrometallurgical treatment in the US leads to the lowest environmental impact of US-made CdTe solar modules.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"294 \",\"pages\":\"Article 113898\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825004994\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825004994","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

碲化镉(CdTe)是领先的薄膜太阳能技术,占美国市场的21%。美国对碲的需求将上升,因为到2027年,美国国内碲化镉产量预计将达到14吉瓦。在过去的十年里,美国已经开始在国内生产碲,并将进口依赖从95%降低到不到25%。这种转变为尽量减少碲生产对环境的影响提供了机会。碲主要通过化学或热萃取法从铜阳极泥中回收。以往的研究采用生命周期评价方法来评价碲的环境影响。然而,这些研究使用电子废料处理数据作为代理来模拟阳极泥处理,这并不能准确反映商业过程,因此,为决策者提供了误导性的见解。为了解决这一差距,目前的研究使用生命周期评估来估计中国、加拿大、日本和美国通过水力和水火冶金工艺生产碲的环境足迹。这项工作强调了碲的生产方法和位置对碲和碲镉太阳能组件的环境影响的影响。结果表明,先前的估计低估了半导体级碲的碳足迹高达46%。文献也低估了淡水毒性和CdTe太阳能组件的非生物耗竭潜力分别为35%和50%。最后,在美国通过阳极泥水火冶金法生产碲,使美国制造的碲化镉太阳能组件对环境的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental impact of tellurium: From copper mining to thin film solar modules
Cadmium-telluride (CdTe) is the leading thin-film solar technology, holding 21 % of the US market. The demand for tellurium will rise in the US as domestic CdTe production is expected to reach 14 GW by 2027. Over the past decade, the US has begun domestic tellurium production and reduced import reliance from 95 % to less than 25 %. This shift presents an opportunity to minimize the environmental impact of tellurium production. Tellurium is primarily recovered from copper anode slimes via chemical- or heat-based extraction methods. Previous studies use life cycle assessment to evaluate the environmental impact of tellurium. However, these studies model anode slime treatment using electronic scrap processing data as a proxy, which does not accurately reflect commercial processes, and as a result, offers misleading insights for decision-makers. To address this gap, the current study uses life cycle assessment to estimate the environmental footprint of tellurium production via hydro- and hydro-pyrometallurgical processing in China, Canada, Japan, and USA. This work highlights the effect of the tellurium production method and location on the environmental impact of tellurium and CdTe solar modules. The results show that previous estimates underestimate the carbon footprint of semiconductor-grade tellurium by up to 46 %. The literature also underestimates freshwater toxicity and the abiotic depletion potential of CdTe solar modules by 35 % and 50 %, respectively. Finally, producing tellurium via anode slime hydro-pyrometallurgical treatment in the US leads to the lowest environmental impact of US-made CdTe solar modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信