探索混合和透明水文建模的Kolmogorov-Arnold神经网络

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xin Jing, Xue Yang, Jungang Luo, Ganggang Zuo
{"title":"探索混合和透明水文建模的Kolmogorov-Arnold神经网络","authors":"Xin Jing,&nbsp;Xue Yang,&nbsp;Jungang Luo,&nbsp;Ganggang Zuo","doi":"10.1016/j.envsoft.2025.106648","DOIUrl":null,"url":null,"abstract":"<div><div>The limited interpretability of deep learning models poses challenges for their integration into process-based hydrological frameworks. To explore potential solutions, we develop K50, a hybrid model that incorporates Kolmogorov–Arnold Networks (KAN) into the Exp-Hydro model. Based on the CAMELS dataset, this study undertakes the following investigations. First, we compare the predictive performance of K50 with that of the Multilayer Perceptron (MLP)-based hybrid model. Second, we visualize the KAN's activation functions to reveal the functional relationships between key input variables and runoff generation. Third, we apply symbolic regression to these functions to derive basin-specific empirical formulas. The results indicate that K50 achieves predictive accuracy comparable to the MLP-based model, while offering an interpretable representation of internal processes. The empirical functions derived from KAN can provide simplified expressions that support physical reasoning. These findings suggest that KAN has the potential to contribute to more interpretable and transparent hybrid hydrological modeling.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106648"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Kolmogorov-Arnold neural networks for hybrid and transparent hydrological modeling\",\"authors\":\"Xin Jing,&nbsp;Xue Yang,&nbsp;Jungang Luo,&nbsp;Ganggang Zuo\",\"doi\":\"10.1016/j.envsoft.2025.106648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The limited interpretability of deep learning models poses challenges for their integration into process-based hydrological frameworks. To explore potential solutions, we develop K50, a hybrid model that incorporates Kolmogorov–Arnold Networks (KAN) into the Exp-Hydro model. Based on the CAMELS dataset, this study undertakes the following investigations. First, we compare the predictive performance of K50 with that of the Multilayer Perceptron (MLP)-based hybrid model. Second, we visualize the KAN's activation functions to reveal the functional relationships between key input variables and runoff generation. Third, we apply symbolic regression to these functions to derive basin-specific empirical formulas. The results indicate that K50 achieves predictive accuracy comparable to the MLP-based model, while offering an interpretable representation of internal processes. The empirical functions derived from KAN can provide simplified expressions that support physical reasoning. These findings suggest that KAN has the potential to contribute to more interpretable and transparent hybrid hydrological modeling.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"193 \",\"pages\":\"Article 106648\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003329\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003329","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型有限的可解释性对其集成到基于过程的水文框架提出了挑战。为了探索潜在的解决方案,我们开发了K50,这是一个将Kolmogorov-Arnold Networks (KAN)纳入expo - hydro模型的混合模型。基于camel数据集,本研究进行了以下调查。首先,我们比较了K50与基于多层感知器(Multilayer Perceptron, MLP)的混合模型的预测性能。其次,我们可视化了KAN的激活函数,以揭示关键输入变量与径流生成之间的函数关系。第三,我们对这些函数应用符号回归来推导盆地特定的经验公式。结果表明,K50达到了与基于mlp的模型相当的预测精度,同时提供了内部过程的可解释表示。由KAN导出的经验函数可以提供支持物理推理的简化表达式。这些发现表明,KAN有潜力为更可解释和透明的混合水文模型做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Kolmogorov-Arnold neural networks for hybrid and transparent hydrological modeling
The limited interpretability of deep learning models poses challenges for their integration into process-based hydrological frameworks. To explore potential solutions, we develop K50, a hybrid model that incorporates Kolmogorov–Arnold Networks (KAN) into the Exp-Hydro model. Based on the CAMELS dataset, this study undertakes the following investigations. First, we compare the predictive performance of K50 with that of the Multilayer Perceptron (MLP)-based hybrid model. Second, we visualize the KAN's activation functions to reveal the functional relationships between key input variables and runoff generation. Third, we apply symbolic regression to these functions to derive basin-specific empirical formulas. The results indicate that K50 achieves predictive accuracy comparable to the MLP-based model, while offering an interpretable representation of internal processes. The empirical functions derived from KAN can provide simplified expressions that support physical reasoning. These findings suggest that KAN has the potential to contribute to more interpretable and transparent hybrid hydrological modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信