磁流体时空的孤子几何:利玛窦·布吉尼翁的见解和能量动量表征

IF 1.2 3区 数学 Q1 MATHEMATICS
Karthika Ramasamy, Soumendu Roy
{"title":"磁流体时空的孤子几何:利玛窦·布吉尼翁的见解和能量动量表征","authors":"Karthika Ramasamy,&nbsp;Soumendu Roy","doi":"10.1016/j.geomphys.2025.105609","DOIUrl":null,"url":null,"abstract":"<div><div>The main objective of our current article is to inspect the solitonic aspect of relativistic magneto-fluid spacetime if its metric is Ricci Bourguignon soliton. We explored some geometrical behaviour of magneto-fluid spacetime emerged with a Ricci Bourguignon soliton. We accomplished a few characterizations of magneto-fluid spacetime in relation to a Ricci bourguignon soliton with a <span><math><mi>ϕ</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span>-vector field, torse-forming vector field and conformal Killing vector field. Also, we determine the con-harmonically flat, <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-flat and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-flat curvature state of a magneto-fluid spacetime admitting Ricci bourguignon soliton. Eventually, we explored the magneto-fluid spacetime model characterized by a specific form of energy-momentum tensor in which the pressure equals the energy density. Also, we explicit an example to verify our result. Furthermore, this investigation may offer new insights into the magneto-geometric behaviour of compact astrophysical objects such as neutron stars and magnetars, and opens unexplored avenues for geometric modelling in magnetohydrodynamic engineering and modified gravity theories.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105609"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solitonic geometry of Magneto fluid spacetimes: Ricci Bourguignon insights and energy momentum characterizations\",\"authors\":\"Karthika Ramasamy,&nbsp;Soumendu Roy\",\"doi\":\"10.1016/j.geomphys.2025.105609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main objective of our current article is to inspect the solitonic aspect of relativistic magneto-fluid spacetime if its metric is Ricci Bourguignon soliton. We explored some geometrical behaviour of magneto-fluid spacetime emerged with a Ricci Bourguignon soliton. We accomplished a few characterizations of magneto-fluid spacetime in relation to a Ricci bourguignon soliton with a <span><math><mi>ϕ</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span>-vector field, torse-forming vector field and conformal Killing vector field. Also, we determine the con-harmonically flat, <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-flat and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-flat curvature state of a magneto-fluid spacetime admitting Ricci bourguignon soliton. Eventually, we explored the magneto-fluid spacetime model characterized by a specific form of energy-momentum tensor in which the pressure equals the energy density. Also, we explicit an example to verify our result. Furthermore, this investigation may offer new insights into the magneto-geometric behaviour of compact astrophysical objects such as neutron stars and magnetars, and opens unexplored avenues for geometric modelling in magnetohydrodynamic engineering and modified gravity theories.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"217 \",\"pages\":\"Article 105609\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001937\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001937","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是考察相对论性磁流体时空的孤子方面,如果它的度规是Ricci Bourguignon孤子。我们探讨了里奇布吉尼翁孤子出现时磁流体时空的一些几何行为。我们完成了与具有φ (Q)矢量场,扭转形成矢量场和保形杀死矢量场的Ricci bourguignon孤子相关的磁流体时空的一些表征。此外,我们还确定了Ricci bourguignon孤子的磁流体时空的非调和平坦、w2平坦和q1平坦曲率态。最后,我们探索了以特定形式的能量-动量张量为特征的磁流体时空模型,其中压力等于能量密度。此外,我们还显式地给出了一个示例来验证我们的结果。此外,这项研究可能为致密天体物理对象(如中子星和磁星)的磁几何行为提供新的见解,并为磁流体力学工程和修正重力理论的几何建模开辟了尚未探索的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solitonic geometry of Magneto fluid spacetimes: Ricci Bourguignon insights and energy momentum characterizations
The main objective of our current article is to inspect the solitonic aspect of relativistic magneto-fluid spacetime if its metric is Ricci Bourguignon soliton. We explored some geometrical behaviour of magneto-fluid spacetime emerged with a Ricci Bourguignon soliton. We accomplished a few characterizations of magneto-fluid spacetime in relation to a Ricci bourguignon soliton with a ϕ(Q)-vector field, torse-forming vector field and conformal Killing vector field. Also, we determine the con-harmonically flat, W2-flat and Q1-flat curvature state of a magneto-fluid spacetime admitting Ricci bourguignon soliton. Eventually, we explored the magneto-fluid spacetime model characterized by a specific form of energy-momentum tensor in which the pressure equals the energy density. Also, we explicit an example to verify our result. Furthermore, this investigation may offer new insights into the magneto-geometric behaviour of compact astrophysical objects such as neutron stars and magnetars, and opens unexplored avenues for geometric modelling in magnetohydrodynamic engineering and modified gravity theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信