树的Weisfeiler-Leman稳定化

IF 1.2 2区 数学 Q2 MATHEMATICS
Jing Xu , Tatsuro Ito , Shuang-Dong Li
{"title":"树的Weisfeiler-Leman稳定化","authors":"Jing Xu ,&nbsp;Tatsuro Ito ,&nbsp;Shuang-Dong Li","doi":"10.1016/j.jcta.2025.106099","DOIUrl":null,"url":null,"abstract":"<div><div>For the Weisfeiler-Leman stabilization, we introduce a concept, which we call the coherent length, to measure how long it takes. We show that the coherent length is at most <em>8</em> for trees, using the structures of their <em>T</em>-algebras and of the centralizer algebras of their automorphism groups.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"218 ","pages":"Article 106099"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Weisfeiler-Leman stabilization of a tree\",\"authors\":\"Jing Xu ,&nbsp;Tatsuro Ito ,&nbsp;Shuang-Dong Li\",\"doi\":\"10.1016/j.jcta.2025.106099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the Weisfeiler-Leman stabilization, we introduce a concept, which we call the coherent length, to measure how long it takes. We show that the coherent length is at most <em>8</em> for trees, using the structures of their <em>T</em>-algebras and of the centralizer algebras of their automorphism groups.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"218 \",\"pages\":\"Article 106099\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000949\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000949","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于Weisfeiler-Leman稳定化,我们引入了一个概念,我们称之为相干长度,来测量它需要多长时间。利用树的t代数及其自同构群的中心化代数的结构,证明了树的相干长度最多为8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Weisfeiler-Leman stabilization of a tree
For the Weisfeiler-Leman stabilization, we introduce a concept, which we call the coherent length, to measure how long it takes. We show that the coherent length is at most 8 for trees, using the structures of their T-algebras and of the centralizer algebras of their automorphism groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信