Aurore Guillaume , Lise Appels , Vladimír Kočí , Jan Aerts , Annemie Geeraerd
{"title":"将饮食转变对农业经济的影响纳入环境评估:对世界上最大的红肉食者的影响","authors":"Aurore Guillaume , Lise Appels , Vladimír Kočí , Jan Aerts , Annemie Geeraerd","doi":"10.1016/j.spc.2025.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>Shifting one's diet towards more plant-based products is seen as one of the most efficient ways to mitigate one's environmental footprint. Yet, associated market adjustments between global demand and supply are rarely considered in environmental assessments and could counterbalance expected environmental benefits. In this context, we used an agro-economic model to predict global production changes following a demand shift towards EAT-Lancet guidelines for red meat and legume intake for the year 2030. We modelled four scenarios which apply to diverse regions, namely, the European Union (EU), EU and China, 40 % of the largest red meat eaters and the whole world. The environmental impact of these subsequent changes was quantified using consequential Life Cycle Assessment. Results show that significant environmental benefits could be achieved already when 40 % of the largest red meat-eating population shifts its diet. For greenhouse gas emissions, it translates into 1.02 GtCO<sub>2</sub> eq and 1.27 GtCO<sub>2</sub> eq saved in the 40 % and global diet shift scenarios, respectively. This latter is equivalent to the annual savings needed to reach net zero in 2050 for the Paris Agreement. Most of the local environmental benefits are linked to the regional specialisation of agricultural production. For example, there would be lower acidification in Asia due to the decrease in livestock production and lower aquatic eutrophication and ecotoxicity in the Americas due to the decrease in feed production. To reach such diet shifts and associated environmental benefits, context-specific solutions should be defined considering cultural and, global and regional physical constraints.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"59 ","pages":"Pages 27-38"},"PeriodicalIF":9.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Including the agro-economic effects of diet shifts into environmental assessments: Implications for the world's largest red meat eaters\",\"authors\":\"Aurore Guillaume , Lise Appels , Vladimír Kočí , Jan Aerts , Annemie Geeraerd\",\"doi\":\"10.1016/j.spc.2025.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shifting one's diet towards more plant-based products is seen as one of the most efficient ways to mitigate one's environmental footprint. Yet, associated market adjustments between global demand and supply are rarely considered in environmental assessments and could counterbalance expected environmental benefits. In this context, we used an agro-economic model to predict global production changes following a demand shift towards EAT-Lancet guidelines for red meat and legume intake for the year 2030. We modelled four scenarios which apply to diverse regions, namely, the European Union (EU), EU and China, 40 % of the largest red meat eaters and the whole world. The environmental impact of these subsequent changes was quantified using consequential Life Cycle Assessment. Results show that significant environmental benefits could be achieved already when 40 % of the largest red meat-eating population shifts its diet. For greenhouse gas emissions, it translates into 1.02 GtCO<sub>2</sub> eq and 1.27 GtCO<sub>2</sub> eq saved in the 40 % and global diet shift scenarios, respectively. This latter is equivalent to the annual savings needed to reach net zero in 2050 for the Paris Agreement. Most of the local environmental benefits are linked to the regional specialisation of agricultural production. For example, there would be lower acidification in Asia due to the decrease in livestock production and lower aquatic eutrophication and ecotoxicity in the Americas due to the decrease in feed production. To reach such diet shifts and associated environmental benefits, context-specific solutions should be defined considering cultural and, global and regional physical constraints.</div></div>\",\"PeriodicalId\":48619,\"journal\":{\"name\":\"Sustainable Production and Consumption\",\"volume\":\"59 \",\"pages\":\"Pages 27-38\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Production and Consumption\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352550925001629\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550925001629","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Including the agro-economic effects of diet shifts into environmental assessments: Implications for the world's largest red meat eaters
Shifting one's diet towards more plant-based products is seen as one of the most efficient ways to mitigate one's environmental footprint. Yet, associated market adjustments between global demand and supply are rarely considered in environmental assessments and could counterbalance expected environmental benefits. In this context, we used an agro-economic model to predict global production changes following a demand shift towards EAT-Lancet guidelines for red meat and legume intake for the year 2030. We modelled four scenarios which apply to diverse regions, namely, the European Union (EU), EU and China, 40 % of the largest red meat eaters and the whole world. The environmental impact of these subsequent changes was quantified using consequential Life Cycle Assessment. Results show that significant environmental benefits could be achieved already when 40 % of the largest red meat-eating population shifts its diet. For greenhouse gas emissions, it translates into 1.02 GtCO2 eq and 1.27 GtCO2 eq saved in the 40 % and global diet shift scenarios, respectively. This latter is equivalent to the annual savings needed to reach net zero in 2050 for the Paris Agreement. Most of the local environmental benefits are linked to the regional specialisation of agricultural production. For example, there would be lower acidification in Asia due to the decrease in livestock production and lower aquatic eutrophication and ecotoxicity in the Americas due to the decrease in feed production. To reach such diet shifts and associated environmental benefits, context-specific solutions should be defined considering cultural and, global and regional physical constraints.
期刊介绍:
Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.