定阶最大次连通图的零强迫数的界

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Chaohui Chen , Muhuo Liu , Bit-Shun Tam , Bo Cheng
{"title":"定阶最大次连通图的零强迫数的界","authors":"Chaohui Chen ,&nbsp;Muhuo Liu ,&nbsp;Bit-Shun Tam ,&nbsp;Bo Cheng","doi":"10.1016/j.dam.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>The zero forcing number <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> was proposed by the AIM Minimum Rank-Special Graphs Work Group as an upper bound on the nullities of matrices associated with <span><math><mi>G</mi></math></span>. Recently, the study of upper bounds for the zero forcing number and for the nullity of a connected graph in terms of its order and maximum degree has received much attention. In particular, Gentner and Rautenbach (2018) proved that if <span><math><mi>G</mi></math></span> is a connected graph of order <span><math><mi>n</mi></math></span> with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>n</mi></mrow></math></span> except when <span><math><mi>G</mi></math></span> is a complete graph, a complete bipartite graph of the form <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> with <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span>, or is equal to <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are two specific graphs of order 5 and 7, respectively. In this paper we identify all connected graphs <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span> that satisfy <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>n</mi></mrow></math></span>, and prove that if <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&lt;</mo><mfrac><mrow><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>n</mi></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span> then <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>. We find one graph missing from the list of exceptional graphs in the above-mentioned result of Gentner and Rautenbach and provide an independent alternative proof for the amended result. A new proof technique which is based on the concept of maximal augmenting path is introduced in the course of proofs. We also rederive or improve existing upper bounds for the nullity of a connected graph in terms of its order and maximum degree.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 116-139"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for zero forcing numbers of connected graphs with fixed order and maximum degree\",\"authors\":\"Chaohui Chen ,&nbsp;Muhuo Liu ,&nbsp;Bit-Shun Tam ,&nbsp;Bo Cheng\",\"doi\":\"10.1016/j.dam.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The zero forcing number <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> was proposed by the AIM Minimum Rank-Special Graphs Work Group as an upper bound on the nullities of matrices associated with <span><math><mi>G</mi></math></span>. Recently, the study of upper bounds for the zero forcing number and for the nullity of a connected graph in terms of its order and maximum degree has received much attention. In particular, Gentner and Rautenbach (2018) proved that if <span><math><mi>G</mi></math></span> is a connected graph of order <span><math><mi>n</mi></math></span> with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>n</mi></mrow></math></span> except when <span><math><mi>G</mi></math></span> is a complete graph, a complete bipartite graph of the form <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> with <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span>, or is equal to <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are two specific graphs of order 5 and 7, respectively. In this paper we identify all connected graphs <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span> that satisfy <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>n</mi></mrow></math></span>, and prove that if <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&lt;</mo><mfrac><mrow><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>n</mi></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span> then <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>. We find one graph missing from the list of exceptional graphs in the above-mentioned result of Gentner and Rautenbach and provide an independent alternative proof for the amended result. A new proof technique which is based on the concept of maximal augmenting path is introduced in the course of proofs. We also rederive or improve existing upper bounds for the nullity of a connected graph in terms of its order and maximum degree.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 116-139\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004421\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004421","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G的零强迫数Z(G)是AIM最小秩-特殊图工作组提出的图G的零强迫数Z(G)作为与G相关的矩阵零性的上界。近年来,关于图的零强迫数上界和图的最大阶数的零性上界的研究受到了广泛的关注。特别地,genner和Rautenbach(2018)证明了如果G是最大次为Δ≥3的n阶连通图,则Z(G)≤Δ−2Δ−1n,除非G是完全图,形式为Kn1,n2且|n1−n2|≤1的完全二部图,或等于W1,W2,其中W1和W2分别是5阶和7阶的两个特定图。本文确定了最大次为Δ≥3且满足Z(G)=Δ−2Δ−1n的所有n阶连通图G,并证明了如果Z(G)<(Δ−2)nΔ−1则Z(G)≤(Δ−2)n−1Δ−1。我们在genner和Rautenbach的上述结果的例外图列表中发现了一个图缺失,并为修正后的结果提供了一个独立的替代证明。在证明过程中,提出了一种基于极大增广路径的证明方法。我们还从连通图的阶数和最大度的角度重新推导或改进了连通图的null的已有上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for zero forcing numbers of connected graphs with fixed order and maximum degree
The zero forcing number Z(G) of a graph G was proposed by the AIM Minimum Rank-Special Graphs Work Group as an upper bound on the nullities of matrices associated with G. Recently, the study of upper bounds for the zero forcing number and for the nullity of a connected graph in terms of its order and maximum degree has received much attention. In particular, Gentner and Rautenbach (2018) proved that if G is a connected graph of order n with maximum degree Δ3, then Z(G)Δ2Δ1n except when G is a complete graph, a complete bipartite graph of the form Kn1,n2 with |n1n2|1, or is equal to W1,W2, where W1 and W2 are two specific graphs of order 5 and 7, respectively. In this paper we identify all connected graphs G of order n with maximum degree Δ3 that satisfy Z(G)=Δ2Δ1n, and prove that if Z(G)<(Δ2)nΔ1 then Z(G)(Δ2)n1Δ1. We find one graph missing from the list of exceptional graphs in the above-mentioned result of Gentner and Rautenbach and provide an independent alternative proof for the amended result. A new proof technique which is based on the concept of maximal augmenting path is introduced in the course of proofs. We also rederive or improve existing upper bounds for the nullity of a connected graph in terms of its order and maximum degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信