Chaohui Chen , Muhuo Liu , Bit-Shun Tam , Bo Cheng
{"title":"定阶最大次连通图的零强迫数的界","authors":"Chaohui Chen , Muhuo Liu , Bit-Shun Tam , Bo Cheng","doi":"10.1016/j.dam.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>The zero forcing number <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> was proposed by the AIM Minimum Rank-Special Graphs Work Group as an upper bound on the nullities of matrices associated with <span><math><mi>G</mi></math></span>. Recently, the study of upper bounds for the zero forcing number and for the nullity of a connected graph in terms of its order and maximum degree has received much attention. In particular, Gentner and Rautenbach (2018) proved that if <span><math><mi>G</mi></math></span> is a connected graph of order <span><math><mi>n</mi></math></span> with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>n</mi></mrow></math></span> except when <span><math><mi>G</mi></math></span> is a complete graph, a complete bipartite graph of the form <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> with <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span>, or is equal to <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are two specific graphs of order 5 and 7, respectively. In this paper we identify all connected graphs <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span> that satisfy <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>n</mi></mrow></math></span>, and prove that if <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><mfrac><mrow><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>n</mi></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span> then <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>. We find one graph missing from the list of exceptional graphs in the above-mentioned result of Gentner and Rautenbach and provide an independent alternative proof for the amended result. A new proof technique which is based on the concept of maximal augmenting path is introduced in the course of proofs. We also rederive or improve existing upper bounds for the nullity of a connected graph in terms of its order and maximum degree.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 116-139"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for zero forcing numbers of connected graphs with fixed order and maximum degree\",\"authors\":\"Chaohui Chen , Muhuo Liu , Bit-Shun Tam , Bo Cheng\",\"doi\":\"10.1016/j.dam.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The zero forcing number <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> was proposed by the AIM Minimum Rank-Special Graphs Work Group as an upper bound on the nullities of matrices associated with <span><math><mi>G</mi></math></span>. Recently, the study of upper bounds for the zero forcing number and for the nullity of a connected graph in terms of its order and maximum degree has received much attention. In particular, Gentner and Rautenbach (2018) proved that if <span><math><mi>G</mi></math></span> is a connected graph of order <span><math><mi>n</mi></math></span> with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>n</mi></mrow></math></span> except when <span><math><mi>G</mi></math></span> is a complete graph, a complete bipartite graph of the form <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> with <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span>, or is equal to <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are two specific graphs of order 5 and 7, respectively. In this paper we identify all connected graphs <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span> that satisfy <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>n</mi></mrow></math></span>, and prove that if <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><mfrac><mrow><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>n</mi></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span> then <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>. We find one graph missing from the list of exceptional graphs in the above-mentioned result of Gentner and Rautenbach and provide an independent alternative proof for the amended result. A new proof technique which is based on the concept of maximal augmenting path is introduced in the course of proofs. We also rederive or improve existing upper bounds for the nullity of a connected graph in terms of its order and maximum degree.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 116-139\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004421\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004421","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Bounds for zero forcing numbers of connected graphs with fixed order and maximum degree
The zero forcing number of a graph was proposed by the AIM Minimum Rank-Special Graphs Work Group as an upper bound on the nullities of matrices associated with . Recently, the study of upper bounds for the zero forcing number and for the nullity of a connected graph in terms of its order and maximum degree has received much attention. In particular, Gentner and Rautenbach (2018) proved that if is a connected graph of order with maximum degree , then except when is a complete graph, a complete bipartite graph of the form with , or is equal to , where and are two specific graphs of order 5 and 7, respectively. In this paper we identify all connected graphs of order with maximum degree that satisfy , and prove that if then . We find one graph missing from the list of exceptional graphs in the above-mentioned result of Gentner and Rautenbach and provide an independent alternative proof for the amended result. A new proof technique which is based on the concept of maximal augmenting path is introduced in the course of proofs. We also rederive or improve existing upper bounds for the nullity of a connected graph in terms of its order and maximum degree.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.