{"title":"非线性指数抽样的进展:收敛性、定量分析和voronovskaya型公式","authors":"Danilo Costarelli, Mariarosaria Natale","doi":"10.1016/j.cnsns.2025.109202","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce the nonlinear exponential Kantorovich sampling series. We establish pointwise and uniform convergence properties and a nonlinear asymptotic formula of the Voronovskaja-type given in terms of the limsup. Furthermore, we extend these convergence results to Mellin–Orlicz spaces with respect to the logarithmic (Haar) measure. Quantitative results are also given, using the log-modulus of continuity and the log-modulus of smoothness, respectively, for log-uniformly continuous functions and for functions in Mellin–Orlicz spaces. Consequently, the qualitative order of convergence can be obtained in case of functions belonging to suitable Lipschitz (log-Hölderian) classes.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109202"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in nonlinear exponential sampling: convergence, quantitative analysis and Voronovskaya-type formula\",\"authors\":\"Danilo Costarelli, Mariarosaria Natale\",\"doi\":\"10.1016/j.cnsns.2025.109202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce the nonlinear exponential Kantorovich sampling series. We establish pointwise and uniform convergence properties and a nonlinear asymptotic formula of the Voronovskaja-type given in terms of the limsup. Furthermore, we extend these convergence results to Mellin–Orlicz spaces with respect to the logarithmic (Haar) measure. Quantitative results are also given, using the log-modulus of continuity and the log-modulus of smoothness, respectively, for log-uniformly continuous functions and for functions in Mellin–Orlicz spaces. Consequently, the qualitative order of convergence can be obtained in case of functions belonging to suitable Lipschitz (log-Hölderian) classes.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"152 \",\"pages\":\"Article 109202\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425006136\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425006136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Advancements in nonlinear exponential sampling: convergence, quantitative analysis and Voronovskaya-type formula
In this paper, we introduce the nonlinear exponential Kantorovich sampling series. We establish pointwise and uniform convergence properties and a nonlinear asymptotic formula of the Voronovskaja-type given in terms of the limsup. Furthermore, we extend these convergence results to Mellin–Orlicz spaces with respect to the logarithmic (Haar) measure. Quantitative results are also given, using the log-modulus of continuity and the log-modulus of smoothness, respectively, for log-uniformly continuous functions and for functions in Mellin–Orlicz spaces. Consequently, the qualitative order of convergence can be obtained in case of functions belonging to suitable Lipschitz (log-Hölderian) classes.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.