非线性指数抽样的进展:收敛性、定量分析和voronovskaya型公式

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Danilo Costarelli, Mariarosaria Natale
{"title":"非线性指数抽样的进展:收敛性、定量分析和voronovskaya型公式","authors":"Danilo Costarelli,&nbsp;Mariarosaria Natale","doi":"10.1016/j.cnsns.2025.109202","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce the nonlinear exponential Kantorovich sampling series. We establish pointwise and uniform convergence properties and a nonlinear asymptotic formula of the Voronovskaja-type given in terms of the limsup. Furthermore, we extend these convergence results to Mellin–Orlicz spaces with respect to the logarithmic (Haar) measure. Quantitative results are also given, using the log-modulus of continuity and the log-modulus of smoothness, respectively, for log-uniformly continuous functions and for functions in Mellin–Orlicz spaces. Consequently, the qualitative order of convergence can be obtained in case of functions belonging to suitable Lipschitz (log-Hölderian) classes.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109202"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in nonlinear exponential sampling: convergence, quantitative analysis and Voronovskaya-type formula\",\"authors\":\"Danilo Costarelli,&nbsp;Mariarosaria Natale\",\"doi\":\"10.1016/j.cnsns.2025.109202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce the nonlinear exponential Kantorovich sampling series. We establish pointwise and uniform convergence properties and a nonlinear asymptotic formula of the Voronovskaja-type given in terms of the limsup. Furthermore, we extend these convergence results to Mellin–Orlicz spaces with respect to the logarithmic (Haar) measure. Quantitative results are also given, using the log-modulus of continuity and the log-modulus of smoothness, respectively, for log-uniformly continuous functions and for functions in Mellin–Orlicz spaces. Consequently, the qualitative order of convergence can be obtained in case of functions belonging to suitable Lipschitz (log-Hölderian) classes.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"152 \",\"pages\":\"Article 109202\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425006136\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425006136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了非线性指数Kantorovich抽样序列。建立了voronovskaja型的点收敛性和一致收敛性,并给出了用limsup表示的voronovskaja型的非线性渐近公式。进一步,我们将这些收敛结果推广到关于对数(Haar)测度的Mellin-Orlicz空间。用连续的对数模和光滑的对数模分别给出了对数一致连续函数和Mellin-Orlicz空间中函数的定量结果。因此,当函数属于合适的Lipschitz (log-Hölderian)类时,可以得到收敛的定性顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements in nonlinear exponential sampling: convergence, quantitative analysis and Voronovskaya-type formula
In this paper, we introduce the nonlinear exponential Kantorovich sampling series. We establish pointwise and uniform convergence properties and a nonlinear asymptotic formula of the Voronovskaja-type given in terms of the limsup. Furthermore, we extend these convergence results to Mellin–Orlicz spaces with respect to the logarithmic (Haar) measure. Quantitative results are also given, using the log-modulus of continuity and the log-modulus of smoothness, respectively, for log-uniformly continuous functions and for functions in Mellin–Orlicz spaces. Consequently, the qualitative order of convergence can be obtained in case of functions belonging to suitable Lipschitz (log-Hölderian) classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信