Amina Riaz , Hafiz Muhammad Afzal Siddiqui , Nasir Ali
{"title":"环的图论表征:零因子图的外多集维","authors":"Amina Riaz , Hafiz Muhammad Afzal Siddiqui , Nasir Ali","doi":"10.1016/j.dam.2025.08.022","DOIUrl":null,"url":null,"abstract":"<div><div>A finite unital commutative ring (UCR) is denoted by <span><math><mi>A</mi></math></span>. The elements <span><math><mrow><mi>ζ</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>η</mi><mo>≠</mo><mn>0</mn></mrow></math></span> in <span><math><mi>A</mi></math></span> are zero divisors if their product satisfies <span><math><mrow><mi>ζ</mi><mi>⋅</mi><mi>η</mi><mo>=</mo><mn>0</mn></mrow></math></span>. The set of zero divisor graph in <span><math><mi>A</mi></math></span> is denoted by <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>. A zero divisor graph is constructed using <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> in order to analyze various algebraic properties. In this article, we characterize the rings based on Outer multiset dimension (OMdim) of their associated zero divisor graphs. For this purpose, we study the zero divisor graphs of rings, including the ring of Gaussian integers modulo <span><math><mi>m</mi></math></span>, <span><math><mrow><msub><mrow><mi>ℨ</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>[</mo><mi>i</mi><mo>]</mo></mrow></mrow></math></span>, the ring of integers modulo <span><math><mi>n</mi></math></span>, <span><math><msub><mrow><mi>ℨ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and certain quotient polynomial rings. Also particularly, we study the OMdim of zero divisor graphs of ring <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for all values of <span><math><mi>n</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 436-444"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-theoretic characterization of rings: Outer multiset dimension of zero-divisor graphs\",\"authors\":\"Amina Riaz , Hafiz Muhammad Afzal Siddiqui , Nasir Ali\",\"doi\":\"10.1016/j.dam.2025.08.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A finite unital commutative ring (UCR) is denoted by <span><math><mi>A</mi></math></span>. The elements <span><math><mrow><mi>ζ</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>η</mi><mo>≠</mo><mn>0</mn></mrow></math></span> in <span><math><mi>A</mi></math></span> are zero divisors if their product satisfies <span><math><mrow><mi>ζ</mi><mi>⋅</mi><mi>η</mi><mo>=</mo><mn>0</mn></mrow></math></span>. The set of zero divisor graph in <span><math><mi>A</mi></math></span> is denoted by <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>. A zero divisor graph is constructed using <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> in order to analyze various algebraic properties. In this article, we characterize the rings based on Outer multiset dimension (OMdim) of their associated zero divisor graphs. For this purpose, we study the zero divisor graphs of rings, including the ring of Gaussian integers modulo <span><math><mi>m</mi></math></span>, <span><math><mrow><msub><mrow><mi>ℨ</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>[</mo><mi>i</mi><mo>]</mo></mrow></mrow></math></span>, the ring of integers modulo <span><math><mi>n</mi></math></span>, <span><math><msub><mrow><mi>ℨ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and certain quotient polynomial rings. Also particularly, we study the OMdim of zero divisor graphs of ring <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for all values of <span><math><mi>n</mi></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 436-444\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004652\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004652","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
有限单位交换环(UCR)用A表示,如果A中元素ζ≠0,η≠0的乘积满足ζ⋅η=0,则它们是零因子。A中的零因子图集合用D(A)表示。为了分析各种代数性质,利用D(A)构造了一个零因子图。在本文中,我们基于环的相关零因子图的外多集维(OMdim)来表征环。为此,我们研究了环的零因子图,包括模为m、 m m[i]的高斯整数环,模为n、 n的整数环,以及某些商多项式环。特别地,我们研究了环Zn的零因子图对所有n值的极值。
Graph-theoretic characterization of rings: Outer multiset dimension of zero-divisor graphs
A finite unital commutative ring (UCR) is denoted by . The elements in are zero divisors if their product satisfies . The set of zero divisor graph in is denoted by . A zero divisor graph is constructed using in order to analyze various algebraic properties. In this article, we characterize the rings based on Outer multiset dimension (OMdim) of their associated zero divisor graphs. For this purpose, we study the zero divisor graphs of rings, including the ring of Gaussian integers modulo , , the ring of integers modulo , , and certain quotient polynomial rings. Also particularly, we study the OMdim of zero divisor graphs of ring for all values of .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.