{"title":"用眼动追踪识别自闭症谱系障碍的分析驱动模型","authors":"Deblina Mazumder Setu","doi":"10.1016/j.health.2025.100409","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient and early detection of Autism Spectrum Disorder (ASD) is a critical objective in improving diagnosis and intervention outcomes. Various methods based on functional Magnetic Resonance Imaging (fMRI) and questionnaires have been explored, among which eye tracking is a promising approach. However, existing methods relying on eye tracking often restrict us to controlled environments, making things complicated and expensive. This study eliminates the requirement for specific parameters by concentrating just on eye movement data for ASD detection, therefore introducing a novel and user-friendly technique. Feature engineering is employed, encompassing preprocessing and extracting relevant gaze movement data. These properties are utilized in machine learning and deep learning model training with hyperparameter adjusting for optimization. Using the Saliency4ASD dataset and looking beyond its usual gaze focus, this study built a model that uses eye movement alone to identify ASD with about 81% accuracy. This safe, low-cost approach has the potential to provide simple technologies that enable early detection of ASD, hence allowing its accessibility to everyone.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100409"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytics-driven model for identifying autism spectrum disorder using eye tracking\",\"authors\":\"Deblina Mazumder Setu\",\"doi\":\"10.1016/j.health.2025.100409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient and early detection of Autism Spectrum Disorder (ASD) is a critical objective in improving diagnosis and intervention outcomes. Various methods based on functional Magnetic Resonance Imaging (fMRI) and questionnaires have been explored, among which eye tracking is a promising approach. However, existing methods relying on eye tracking often restrict us to controlled environments, making things complicated and expensive. This study eliminates the requirement for specific parameters by concentrating just on eye movement data for ASD detection, therefore introducing a novel and user-friendly technique. Feature engineering is employed, encompassing preprocessing and extracting relevant gaze movement data. These properties are utilized in machine learning and deep learning model training with hyperparameter adjusting for optimization. Using the Saliency4ASD dataset and looking beyond its usual gaze focus, this study built a model that uses eye movement alone to identify ASD with about 81% accuracy. This safe, low-cost approach has the potential to provide simple technologies that enable early detection of ASD, hence allowing its accessibility to everyone.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"8 \",\"pages\":\"Article 100409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442525000280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An analytics-driven model for identifying autism spectrum disorder using eye tracking
The efficient and early detection of Autism Spectrum Disorder (ASD) is a critical objective in improving diagnosis and intervention outcomes. Various methods based on functional Magnetic Resonance Imaging (fMRI) and questionnaires have been explored, among which eye tracking is a promising approach. However, existing methods relying on eye tracking often restrict us to controlled environments, making things complicated and expensive. This study eliminates the requirement for specific parameters by concentrating just on eye movement data for ASD detection, therefore introducing a novel and user-friendly technique. Feature engineering is employed, encompassing preprocessing and extracting relevant gaze movement data. These properties are utilized in machine learning and deep learning model training with hyperparameter adjusting for optimization. Using the Saliency4ASD dataset and looking beyond its usual gaze focus, this study built a model that uses eye movement alone to identify ASD with about 81% accuracy. This safe, low-cost approach has the potential to provide simple technologies that enable early detection of ASD, hence allowing its accessibility to everyone.