Emre Tekoglu , Shuheng Liao , Zachary Kutschke , Alexander D. O’Brien , Bethany Lettiere , Ju Li , A. John Hart
{"title":"结合喷墨打印和激光粉末床熔接技术在金属增材制造中纳米颗粒改性合金的快速探索","authors":"Emre Tekoglu , Shuheng Liao , Zachary Kutschke , Alexander D. O’Brien , Bethany Lettiere , Ju Li , A. John Hart","doi":"10.1016/j.addlet.2025.100315","DOIUrl":null,"url":null,"abstract":"<div><div>The development of new metal alloys is key to the continued advances in critical technologies such as jet engines operating at higher temperatures, rocket engines with longer lifetime and reusability, and reactors for fusion and fission energy generation. While additive manufacturing (AM) is attractive for both prototyping and production of advanced alloys and components, the experimental screening and validation of new alloys typically requires costly synthesis of custom powder feedstocks. We present a technique for high-throughput screening of nanoparticle-enhanced alloys for AM, combining inkjet printing and laser powder bed fusion (LPBF). Alloyed specimens are prepared on metal substrates with shallow machined cavities; a nanoparticle-containing ink is printed into the cavities via inkjet deposition; powder is manually spread into the wells; and then the material is melted by scanning of a laser as in traditional LPBF. We exercise this workflow using Niobium as the base metal and with custom-formulated inks containing Si and/or Ti nanoparticles. The alloyed specimens exhibit locally defined composition, microstructure, and hardness. We demonstrate control of minority element composition of <1 % to >10 % over <1 mm distances, and along with the capability to create multi-material gradients exhibiting complex microstructural effects.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"14 ","pages":"Article 100315"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid exploration of nanoparticle-modified alloys in metal additive manufacturing by combining inkjet printing and laser powder bed fusion\",\"authors\":\"Emre Tekoglu , Shuheng Liao , Zachary Kutschke , Alexander D. O’Brien , Bethany Lettiere , Ju Li , A. John Hart\",\"doi\":\"10.1016/j.addlet.2025.100315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of new metal alloys is key to the continued advances in critical technologies such as jet engines operating at higher temperatures, rocket engines with longer lifetime and reusability, and reactors for fusion and fission energy generation. While additive manufacturing (AM) is attractive for both prototyping and production of advanced alloys and components, the experimental screening and validation of new alloys typically requires costly synthesis of custom powder feedstocks. We present a technique for high-throughput screening of nanoparticle-enhanced alloys for AM, combining inkjet printing and laser powder bed fusion (LPBF). Alloyed specimens are prepared on metal substrates with shallow machined cavities; a nanoparticle-containing ink is printed into the cavities via inkjet deposition; powder is manually spread into the wells; and then the material is melted by scanning of a laser as in traditional LPBF. We exercise this workflow using Niobium as the base metal and with custom-formulated inks containing Si and/or Ti nanoparticles. The alloyed specimens exhibit locally defined composition, microstructure, and hardness. We demonstrate control of minority element composition of <1 % to >10 % over <1 mm distances, and along with the capability to create multi-material gradients exhibiting complex microstructural effects.</div></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"14 \",\"pages\":\"Article 100315\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369025000489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Rapid exploration of nanoparticle-modified alloys in metal additive manufacturing by combining inkjet printing and laser powder bed fusion
The development of new metal alloys is key to the continued advances in critical technologies such as jet engines operating at higher temperatures, rocket engines with longer lifetime and reusability, and reactors for fusion and fission energy generation. While additive manufacturing (AM) is attractive for both prototyping and production of advanced alloys and components, the experimental screening and validation of new alloys typically requires costly synthesis of custom powder feedstocks. We present a technique for high-throughput screening of nanoparticle-enhanced alloys for AM, combining inkjet printing and laser powder bed fusion (LPBF). Alloyed specimens are prepared on metal substrates with shallow machined cavities; a nanoparticle-containing ink is printed into the cavities via inkjet deposition; powder is manually spread into the wells; and then the material is melted by scanning of a laser as in traditional LPBF. We exercise this workflow using Niobium as the base metal and with custom-formulated inks containing Si and/or Ti nanoparticles. The alloyed specimens exhibit locally defined composition, microstructure, and hardness. We demonstrate control of minority element composition of <1 % to >10 % over <1 mm distances, and along with the capability to create multi-material gradients exhibiting complex microstructural effects.