人工智能诊断红斑鳞状皮肤病:对初级保健的技术贡献

IF 3.6 4区 医学 Q2 DERMATOLOGY
Raiza Brito Cipriano , Wilson Falco Neto , Fabiano N. Barcellos Filho , Alexandre Dias Porto Chiavegatto Filho
{"title":"人工智能诊断红斑鳞状皮肤病:对初级保健的技术贡献","authors":"Raiza Brito Cipriano ,&nbsp;Wilson Falco Neto ,&nbsp;Fabiano N. Barcellos Filho ,&nbsp;Alexandre Dias Porto Chiavegatto Filho","doi":"10.1016/j.abd.2025.501169","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accurate diagnoses in dermatology can be challenging for general practitioners. In this context, the support of artificial intelligence tools can be beneficial in the Brazilian primary care setting.</div></div><div><h3>Objectives</h3><div>To develop an interpretable machine-learning algorithm capable of assisting in the diagnosis of erythematous-squamous dermatological diseases through clinical data, without histopathological support.</div></div><div><h3>Methods</h3><div>The random-forest algorithm was trained with the public Dermatology database of 366 patients diagnosed with: chronic dermatitis, lichen planus, pityriasis rosea, pityriasis rubra pilaris, psoriasis, or seborrheic dermatitis. The model was evaluated by performance metrics and interpretability techniques.</div></div><div><h3>Results</h3><div>The model showed good predictive performance, with ROC-AUC ranging from 0.89 to 1.00, and overall accuracy of 0.86. The best results were for the diagnosis of pityriasis rubra pilaris (f1-score: 1.00) and the worst for chronic and seborrheic dermatitis (f1-score: 0.77 and 0.76, respectively). The clinical characteristics that most influenced the model's decision were, in decreasing order: involvement of knees and elbows, involvement of scalp, Koebner phenomenon, polygonal papules, and involvement of oral mucosa.</div></div><div><h3>Study limitations</h3><div>The model was not validated with Brazilian data.</div></div><div><h3>Conclusion</h3><div>The developed technology obtained good predictive performance and clinical coherence. There is a need for adaptation for implementation, using national data. The results indicate the potential for similar models to be improved and adapted to clinical practice for the benefit of the Unified Heath System.</div></div>","PeriodicalId":7787,"journal":{"name":"Anais brasileiros de dermatologia","volume":"100 5","pages":"Article 501169"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence for the diagnosis of erythematous-squamous dermatological diseases: technological contributions to primary care\",\"authors\":\"Raiza Brito Cipriano ,&nbsp;Wilson Falco Neto ,&nbsp;Fabiano N. Barcellos Filho ,&nbsp;Alexandre Dias Porto Chiavegatto Filho\",\"doi\":\"10.1016/j.abd.2025.501169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Accurate diagnoses in dermatology can be challenging for general practitioners. In this context, the support of artificial intelligence tools can be beneficial in the Brazilian primary care setting.</div></div><div><h3>Objectives</h3><div>To develop an interpretable machine-learning algorithm capable of assisting in the diagnosis of erythematous-squamous dermatological diseases through clinical data, without histopathological support.</div></div><div><h3>Methods</h3><div>The random-forest algorithm was trained with the public Dermatology database of 366 patients diagnosed with: chronic dermatitis, lichen planus, pityriasis rosea, pityriasis rubra pilaris, psoriasis, or seborrheic dermatitis. The model was evaluated by performance metrics and interpretability techniques.</div></div><div><h3>Results</h3><div>The model showed good predictive performance, with ROC-AUC ranging from 0.89 to 1.00, and overall accuracy of 0.86. The best results were for the diagnosis of pityriasis rubra pilaris (f1-score: 1.00) and the worst for chronic and seborrheic dermatitis (f1-score: 0.77 and 0.76, respectively). The clinical characteristics that most influenced the model's decision were, in decreasing order: involvement of knees and elbows, involvement of scalp, Koebner phenomenon, polygonal papules, and involvement of oral mucosa.</div></div><div><h3>Study limitations</h3><div>The model was not validated with Brazilian data.</div></div><div><h3>Conclusion</h3><div>The developed technology obtained good predictive performance and clinical coherence. There is a need for adaptation for implementation, using national data. The results indicate the potential for similar models to be improved and adapted to clinical practice for the benefit of the Unified Heath System.</div></div>\",\"PeriodicalId\":7787,\"journal\":{\"name\":\"Anais brasileiros de dermatologia\",\"volume\":\"100 5\",\"pages\":\"Article 501169\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais brasileiros de dermatologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0365059625001114\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais brasileiros de dermatologia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0365059625001114","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对全科医生来说,准确的皮肤科诊断是一项挑战。在这种情况下,人工智能工具的支持在巴西初级保健环境中是有益的。目的开发一种可解释的机器学习算法,能够在没有组织病理学支持的情况下,通过临床数据协助诊断红斑-鳞状皮肤病。方法采用随机森林算法对366例诊断为慢性皮炎、扁平苔藓、玫瑰糠疹、红色毛疹、牛皮癣或脂溢性皮炎的患者进行训练。该模型通过性能指标和可解释性技术进行评估。结果该模型具有较好的预测效果,ROC-AUC范围为0.89 ~ 1.00,总体准确率为0.86。诊断毛疹糠疹效果最好(f1-评分为1.00),诊断慢性皮炎和脂溢性皮炎效果最差(f1-评分分别为0.77和0.76)。影响模型决策的临床特征由大到小依次为:累及膝关节、肘部、累及头皮、Koebner现象、多边形丘疹、累及口腔黏膜。研究局限性:该模型未得到巴西数据的验证。结论该技术具有较好的预测效果和临床一致性。有必要利用国家数据对实施进行调整。结果表明,类似的模型有可能得到改进,并适应于临床实践,以使统一卫生系统受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence for the diagnosis of erythematous-squamous dermatological diseases: technological contributions to primary care

Background

Accurate diagnoses in dermatology can be challenging for general practitioners. In this context, the support of artificial intelligence tools can be beneficial in the Brazilian primary care setting.

Objectives

To develop an interpretable machine-learning algorithm capable of assisting in the diagnosis of erythematous-squamous dermatological diseases through clinical data, without histopathological support.

Methods

The random-forest algorithm was trained with the public Dermatology database of 366 patients diagnosed with: chronic dermatitis, lichen planus, pityriasis rosea, pityriasis rubra pilaris, psoriasis, or seborrheic dermatitis. The model was evaluated by performance metrics and interpretability techniques.

Results

The model showed good predictive performance, with ROC-AUC ranging from 0.89 to 1.00, and overall accuracy of 0.86. The best results were for the diagnosis of pityriasis rubra pilaris (f1-score: 1.00) and the worst for chronic and seborrheic dermatitis (f1-score: 0.77 and 0.76, respectively). The clinical characteristics that most influenced the model's decision were, in decreasing order: involvement of knees and elbows, involvement of scalp, Koebner phenomenon, polygonal papules, and involvement of oral mucosa.

Study limitations

The model was not validated with Brazilian data.

Conclusion

The developed technology obtained good predictive performance and clinical coherence. There is a need for adaptation for implementation, using national data. The results indicate the potential for similar models to be improved and adapted to clinical practice for the benefit of the Unified Heath System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
184
审稿时长
32 days
期刊介绍: The journal is published bimonthly and is devoted to the dissemination of original, unpublished technical-scientific study, resulting from research or reviews of dermatological topics and related matters. Exchanges with other publications may be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信