{"title":"波兰工业园区的雨水收集:毒性、处理和使用","authors":"Martyna Grzegorzek , Szymon Szymczewski , Joanna Struk-Sokołowska , Bartosz Kaźmierczak","doi":"10.1016/j.wri.2025.100315","DOIUrl":null,"url":null,"abstract":"<div><div>Rainwater quality is strongly influenced by industrial activity. Simultaneously, amid increasing water scarcity, it states a potential supplementary water resource. Therefore, monitoring its quality is essential. This is one of the first studies aiming to assess the quality of rainwater collected in an industrial area (in Lower Silesia, Poland), combined with an assessment of heavy metals (HMs) toxicity to evaluate its ecological risk. Rainwater samples were collected from five locations (drainage ditches and retention tanks). Selected physicochemical parameters (pH, electric conductivity, total suspended and dissolved solids, total phosphorus, BOD<sub>5</sub>, and COD), ions (Ca, Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, F<sup>−</sup>, Al, nitrogen compounds), and selected HMs (Cu, Ni, Cr, Cd) were analyzed in a certified laboratory. Ecological risk was assessed using the risk quotient (RQ) method by comparing maximum observed concentrations with literature-derived predicted no-effect concentrations (PNEC). Most parameters met World Health Organization guidelines, except for Ni (up to 0.098 mg/L), and Cl- (up to 302 mg/L), suggesting possible contamination from industrial emissions. Ca was the most abundant cation (108 mg/L). Rainwater pH was rather neutral. Cu was the most prevalent heavy metal (concentrations up to 0.1 mg/L), and RQ values up to 2000, indicating high ecological risk. Cr posed the lowest ecological risk. The elevated Ni, and Cl<sup>−</sup> concentrations suggest that untreated rainwater is unsuitable for direct reuse. To mitigate risks, appropriate treatment, e.g., filtration, membrane processes, or disinfection (depending on the expected outcomes), is recommended. The findings highlight the need for effective rainwater management and the environmental impact of industrial activities.</div></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"34 ","pages":"Article 100315"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainwater harvesting in a Polish industrial park: Toxicity, treatment, and use\",\"authors\":\"Martyna Grzegorzek , Szymon Szymczewski , Joanna Struk-Sokołowska , Bartosz Kaźmierczak\",\"doi\":\"10.1016/j.wri.2025.100315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rainwater quality is strongly influenced by industrial activity. Simultaneously, amid increasing water scarcity, it states a potential supplementary water resource. Therefore, monitoring its quality is essential. This is one of the first studies aiming to assess the quality of rainwater collected in an industrial area (in Lower Silesia, Poland), combined with an assessment of heavy metals (HMs) toxicity to evaluate its ecological risk. Rainwater samples were collected from five locations (drainage ditches and retention tanks). Selected physicochemical parameters (pH, electric conductivity, total suspended and dissolved solids, total phosphorus, BOD<sub>5</sub>, and COD), ions (Ca, Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, F<sup>−</sup>, Al, nitrogen compounds), and selected HMs (Cu, Ni, Cr, Cd) were analyzed in a certified laboratory. Ecological risk was assessed using the risk quotient (RQ) method by comparing maximum observed concentrations with literature-derived predicted no-effect concentrations (PNEC). Most parameters met World Health Organization guidelines, except for Ni (up to 0.098 mg/L), and Cl- (up to 302 mg/L), suggesting possible contamination from industrial emissions. Ca was the most abundant cation (108 mg/L). Rainwater pH was rather neutral. Cu was the most prevalent heavy metal (concentrations up to 0.1 mg/L), and RQ values up to 2000, indicating high ecological risk. Cr posed the lowest ecological risk. The elevated Ni, and Cl<sup>−</sup> concentrations suggest that untreated rainwater is unsuitable for direct reuse. To mitigate risks, appropriate treatment, e.g., filtration, membrane processes, or disinfection (depending on the expected outcomes), is recommended. The findings highlight the need for effective rainwater management and the environmental impact of industrial activities.</div></div>\",\"PeriodicalId\":23714,\"journal\":{\"name\":\"Water Resources and Industry\",\"volume\":\"34 \",\"pages\":\"Article 100315\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212371725000393\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371725000393","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Rainwater harvesting in a Polish industrial park: Toxicity, treatment, and use
Rainwater quality is strongly influenced by industrial activity. Simultaneously, amid increasing water scarcity, it states a potential supplementary water resource. Therefore, monitoring its quality is essential. This is one of the first studies aiming to assess the quality of rainwater collected in an industrial area (in Lower Silesia, Poland), combined with an assessment of heavy metals (HMs) toxicity to evaluate its ecological risk. Rainwater samples were collected from five locations (drainage ditches and retention tanks). Selected physicochemical parameters (pH, electric conductivity, total suspended and dissolved solids, total phosphorus, BOD5, and COD), ions (Ca, Cl−, SO42−, F−, Al, nitrogen compounds), and selected HMs (Cu, Ni, Cr, Cd) were analyzed in a certified laboratory. Ecological risk was assessed using the risk quotient (RQ) method by comparing maximum observed concentrations with literature-derived predicted no-effect concentrations (PNEC). Most parameters met World Health Organization guidelines, except for Ni (up to 0.098 mg/L), and Cl- (up to 302 mg/L), suggesting possible contamination from industrial emissions. Ca was the most abundant cation (108 mg/L). Rainwater pH was rather neutral. Cu was the most prevalent heavy metal (concentrations up to 0.1 mg/L), and RQ values up to 2000, indicating high ecological risk. Cr posed the lowest ecological risk. The elevated Ni, and Cl− concentrations suggest that untreated rainwater is unsuitable for direct reuse. To mitigate risks, appropriate treatment, e.g., filtration, membrane processes, or disinfection (depending on the expected outcomes), is recommended. The findings highlight the need for effective rainwater management and the environmental impact of industrial activities.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry