{"title":"线性和拟线性椭圆界面问题的浸入有限元方法","authors":"Slimane Adjerid","doi":"10.1016/j.camwa.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>We present a framework for constructing immersed finite element (IFE) spaces for second-order elliptic interface problems on interface-independent meshes exhibiting optimal convergence rates of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></math></span> in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm using a polynomial degree <em>p</em>. We consider linear problems with variable coefficients as well as quasi-linear problems. We present algorithms to create IFE spaces on elements cut by the interface and algorithms to solve the resulting finite element problems. We also present numerical results to demonstrate the performance of the IFE method for several linear problems with variable coefficients and quasi-linear elliptic interface problems in divergence form.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"197 ","pages":"Pages 19-42"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immersed finite element methods for linear and quasi-linear elliptic interface problems\",\"authors\":\"Slimane Adjerid\",\"doi\":\"10.1016/j.camwa.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a framework for constructing immersed finite element (IFE) spaces for second-order elliptic interface problems on interface-independent meshes exhibiting optimal convergence rates of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></math></span> in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm using a polynomial degree <em>p</em>. We consider linear problems with variable coefficients as well as quasi-linear problems. We present algorithms to create IFE spaces on elements cut by the interface and algorithms to solve the resulting finite element problems. We also present numerical results to demonstrate the performance of the IFE method for several linear problems with variable coefficients and quasi-linear elliptic interface problems in divergence form.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"197 \",\"pages\":\"Pages 19-42\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003281\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003281","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Immersed finite element methods for linear and quasi-linear elliptic interface problems
We present a framework for constructing immersed finite element (IFE) spaces for second-order elliptic interface problems on interface-independent meshes exhibiting optimal convergence rates of in the norm and in the norm using a polynomial degree p. We consider linear problems with variable coefficients as well as quasi-linear problems. We present algorithms to create IFE spaces on elements cut by the interface and algorithms to solve the resulting finite element problems. We also present numerical results to demonstrate the performance of the IFE method for several linear problems with variable coefficients and quasi-linear elliptic interface problems in divergence form.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).