在二维随机Black-Scholes方程下,采用choolesky分解和方差缩减技术,利用蒙特卡罗模拟对一篮子期权进行定价

Q1 Mathematics
Youness Saoudi , Khalid Jeaab , Hanaa Hachimi
{"title":"在二维随机Black-Scholes方程下,采用choolesky分解和方差缩减技术,利用蒙特卡罗模拟对一篮子期权进行定价","authors":"Youness Saoudi ,&nbsp;Khalid Jeaab ,&nbsp;Hanaa Hachimi","doi":"10.1016/j.padiff.2025.101270","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines and applies the Monte Carlo approach to the two-dimensional Black–Scholes partial differential equation, including the Cholesky decomposition to generate correlated Brownian motions to evaluate options on two underlying assets. This study focuses on assessing the performance and risk management of investment portfolios that include these two assets, which are part of the NASDAQ 100 stock index and two active stocks of the S&amp;P500 stock index, namely NVIDIA Corp, Tesla Inc, Apple Inc, and Microsoft Corp over one year from November 30, 2023, to November 30, 2024. The two-dimensional Black–Scholes model is chosen for its ability to capture complex market dynamics involving correlated assets. To optimize the valuation of the basket option (Call - Put), variance minimization techniques, namely control variate and stratified sampling methods, were used. The results highlight how these techniques accurately filter Brownian paths and clarify the impact of as set correlations on market behavior.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101270"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pricing basket options using Monte Carlo simulation employing Cholesky decomposition and variance reduction techniques under the 2D stochastic Black–Scholes equation\",\"authors\":\"Youness Saoudi ,&nbsp;Khalid Jeaab ,&nbsp;Hanaa Hachimi\",\"doi\":\"10.1016/j.padiff.2025.101270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines and applies the Monte Carlo approach to the two-dimensional Black–Scholes partial differential equation, including the Cholesky decomposition to generate correlated Brownian motions to evaluate options on two underlying assets. This study focuses on assessing the performance and risk management of investment portfolios that include these two assets, which are part of the NASDAQ 100 stock index and two active stocks of the S&amp;P500 stock index, namely NVIDIA Corp, Tesla Inc, Apple Inc, and Microsoft Corp over one year from November 30, 2023, to November 30, 2024. The two-dimensional Black–Scholes model is chosen for its ability to capture complex market dynamics involving correlated assets. To optimize the valuation of the basket option (Call - Put), variance minimization techniques, namely control variate and stratified sampling methods, were used. The results highlight how these techniques accurately filter Brownian paths and clarify the impact of as set correlations on market behavior.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究并应用蒙特卡罗方法对二维Black-Scholes偏微分方程,包括Cholesky分解来生成相关的布朗运动来评估两个潜在资产的期权。本研究侧重于评估包括这两种资产的投资组合的绩效和风险管理,这两种资产是纳斯达克100指数的一部分,也是标准普尔500指数的两只活跃股票,即NVIDIA公司,特斯拉公司,苹果公司和微软公司,从2023年11月30日到2024年11月30日的一年。选择二维布莱克-斯科尔斯模型是因为它能够捕捉涉及相关资产的复杂市场动态。为了优化篮子期权(看涨-看跌)的估值,使用了方差最小化技术,即控制变量和分层抽样方法。结果突出了这些技术如何准确地过滤布朗路径,并阐明了设定相关性对市场行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pricing basket options using Monte Carlo simulation employing Cholesky decomposition and variance reduction techniques under the 2D stochastic Black–Scholes equation
This paper examines and applies the Monte Carlo approach to the two-dimensional Black–Scholes partial differential equation, including the Cholesky decomposition to generate correlated Brownian motions to evaluate options on two underlying assets. This study focuses on assessing the performance and risk management of investment portfolios that include these two assets, which are part of the NASDAQ 100 stock index and two active stocks of the S&P500 stock index, namely NVIDIA Corp, Tesla Inc, Apple Inc, and Microsoft Corp over one year from November 30, 2023, to November 30, 2024. The two-dimensional Black–Scholes model is chosen for its ability to capture complex market dynamics involving correlated assets. To optimize the valuation of the basket option (Call - Put), variance minimization techniques, namely control variate and stratified sampling methods, were used. The results highlight how these techniques accurately filter Brownian paths and clarify the impact of as set correlations on market behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信