n次模分解:三角形等价和集合

IF 0.8 2区 数学 Q2 MATHEMATICS
Yongliang Sun , Yaohua Zhang
{"title":"n次模分解:三角形等价和集合","authors":"Yongliang Sun ,&nbsp;Yaohua Zhang","doi":"10.1016/j.jalgebra.2025.07.024","DOIUrl":null,"url":null,"abstract":"<div><div>As an extension of Eisenbud's matrix factorization into the non-commutative realm, X.W. Chen introduced the concept of module factorizations over an arbitrary ring. A theorem of Chen establishes triangle equivalences between the stable category of module factorizations with Gorenstein projective components and the stable category of Gorenstein projective modules over a quotient ring. In this paper, we introduce <em>n</em>-fold module factorizations, which generalize both the commutative <em>n</em>-fold matrix factorizations and the non-commutative module factorizations. To adapt triangle equivalences in module factorizations to <em>n</em>-fold module factorizations, we identify suitable subcategories of module factorizations and rings for the <em>n</em>-analogue. We further provide the <em>n</em>-analogue of Chen's theorem on triangle equivalences. Additionally, we study recollements involving the stable categories of higher-fold module factorizations, revealing intriguing recollements within the stable categories of Gorenstein modules of specific matrix subrings.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 1-25"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-fold module factorizations: Triangle equivalences and recollements\",\"authors\":\"Yongliang Sun ,&nbsp;Yaohua Zhang\",\"doi\":\"10.1016/j.jalgebra.2025.07.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an extension of Eisenbud's matrix factorization into the non-commutative realm, X.W. Chen introduced the concept of module factorizations over an arbitrary ring. A theorem of Chen establishes triangle equivalences between the stable category of module factorizations with Gorenstein projective components and the stable category of Gorenstein projective modules over a quotient ring. In this paper, we introduce <em>n</em>-fold module factorizations, which generalize both the commutative <em>n</em>-fold matrix factorizations and the non-commutative module factorizations. To adapt triangle equivalences in module factorizations to <em>n</em>-fold module factorizations, we identify suitable subcategories of module factorizations and rings for the <em>n</em>-analogue. We further provide the <em>n</em>-analogue of Chen's theorem on triangle equivalences. Additionally, we study recollements involving the stable categories of higher-fold module factorizations, revealing intriguing recollements within the stable categories of Gorenstein modules of specific matrix subrings.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 1-25\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004417\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004417","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

作为Eisenbud矩阵分解在非交换领域的推广,陈晓伟在任意环上引入了模分解的概念。Chen的一个定理建立了商环上具有Gorenstein投影分量的模分解的稳定范畴与Gorenstein投影模的稳定范畴之间的三角等价。本文引入n重模分解,推广了可交换n重矩阵分解和非可交换模分解。为了使模分解中的三角等价适用于n次模分解,我们确定了n次模分解的合适子类别和环。进一步给出了陈定理在三角形等价上的n次类似。此外,我们还研究了涉及高次模分解稳定范畴的重集,揭示了特定矩阵子的Gorenstein模稳定范畴内的有趣重集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N-fold module factorizations: Triangle equivalences and recollements
As an extension of Eisenbud's matrix factorization into the non-commutative realm, X.W. Chen introduced the concept of module factorizations over an arbitrary ring. A theorem of Chen establishes triangle equivalences between the stable category of module factorizations with Gorenstein projective components and the stable category of Gorenstein projective modules over a quotient ring. In this paper, we introduce n-fold module factorizations, which generalize both the commutative n-fold matrix factorizations and the non-commutative module factorizations. To adapt triangle equivalences in module factorizations to n-fold module factorizations, we identify suitable subcategories of module factorizations and rings for the n-analogue. We further provide the n-analogue of Chen's theorem on triangle equivalences. Additionally, we study recollements involving the stable categories of higher-fold module factorizations, revealing intriguing recollements within the stable categories of Gorenstein modules of specific matrix subrings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信