{"title":"SONC的双重性:基于电路的证书的进展","authors":"Janin Heuer, Timo de Wolff","doi":"10.1016/j.jsc.2025.102479","DOIUrl":null,"url":null,"abstract":"<div><div>The cone of sums of nonnegative circuits (SONCs) is a subset of the cone of nonnegative polynomials / exponential sums, which has been studied extensively in recent years. In this article, we construct a subset of the SONC cone which we call the DSONC cone. The DSONC cone is naturally derived from the dual SONC cone; membership can be tested via linear programming. We show that the DSONC cone is a proper, full-dimensional cone, we provide a description of its extreme rays, and collect several properties that parallel those of the SONC cone. Moreover, we show that functions in the DSONC cone cannot have real zeros, which yields that DSONC cone does not intersect the boundary of the SONC cone. Furthermore, we discuss the intersection of the DSONC cone with the SOS and SDSOS cones. Finally, we show that circuit functions in the boundary of the DSONC cone are determined by points of equilibria, which hence are the analogues to singular points in the primal SONC cone, and relate the DSONC cone to tropical geometry.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102479"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The duality of SONC: Advances in circuit-based certificates\",\"authors\":\"Janin Heuer, Timo de Wolff\",\"doi\":\"10.1016/j.jsc.2025.102479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cone of sums of nonnegative circuits (SONCs) is a subset of the cone of nonnegative polynomials / exponential sums, which has been studied extensively in recent years. In this article, we construct a subset of the SONC cone which we call the DSONC cone. The DSONC cone is naturally derived from the dual SONC cone; membership can be tested via linear programming. We show that the DSONC cone is a proper, full-dimensional cone, we provide a description of its extreme rays, and collect several properties that parallel those of the SONC cone. Moreover, we show that functions in the DSONC cone cannot have real zeros, which yields that DSONC cone does not intersect the boundary of the SONC cone. Furthermore, we discuss the intersection of the DSONC cone with the SOS and SDSOS cones. Finally, we show that circuit functions in the boundary of the DSONC cone are determined by points of equilibria, which hence are the analogues to singular points in the primal SONC cone, and relate the DSONC cone to tropical geometry.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"132 \",\"pages\":\"Article 102479\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000616\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000616","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The duality of SONC: Advances in circuit-based certificates
The cone of sums of nonnegative circuits (SONCs) is a subset of the cone of nonnegative polynomials / exponential sums, which has been studied extensively in recent years. In this article, we construct a subset of the SONC cone which we call the DSONC cone. The DSONC cone is naturally derived from the dual SONC cone; membership can be tested via linear programming. We show that the DSONC cone is a proper, full-dimensional cone, we provide a description of its extreme rays, and collect several properties that parallel those of the SONC cone. Moreover, we show that functions in the DSONC cone cannot have real zeros, which yields that DSONC cone does not intersect the boundary of the SONC cone. Furthermore, we discuss the intersection of the DSONC cone with the SOS and SDSOS cones. Finally, we show that circuit functions in the boundary of the DSONC cone are determined by points of equilibria, which hence are the analogues to singular points in the primal SONC cone, and relate the DSONC cone to tropical geometry.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.