Yiqi Zhou , Yanfeng Di , Xianjin Huang , Shilin Fu , Xinxian Qi , Chao He , Georgia Destouni
{"title":"全球跨界流域面临严峻的可持续性挑战","authors":"Yiqi Zhou , Yanfeng Di , Xianjin Huang , Shilin Fu , Xinxian Qi , Chao He , Georgia Destouni","doi":"10.1016/j.ese.2025.100611","DOIUrl":null,"url":null,"abstract":"<div><div>Transboundary hydrological basins span international borders and are essential to global water systems, human development, and environmental sustainability. Nearly 40 % of the world's population lives within these basins, which supply critical resources such as freshwater, food, energy, and biodiversity. Yet their sustainability remains poorly understood, as existing assessments often overlook the unique social, environmental, and political complexities of transboundary basins. This study addresses that gap by developing and applying a systematic framework to assess Sustainable Development Goals (SDGs) progress across 310 transboundary basins worldwide. Here we show that transboundary basins score significantly lower on average SDGs achievement (an SDG Index score of 42 on a scale of 0–100) compared to national averages (a score of 67), with considerable variation between regions. We identify four distinct types of transboundary basins in terms of SDGs achievement and associated challenges. We also show that progress on a specific set of goals can drive broader sustainability within each basin type. Notably, achieving clean water (SDG 6), sustainable economic growth (SDG 8), and healthy livelihoods (SDG 3) is linked to overall SDGs success in 38 % of transboundary basins worldwide. Our results highlight the importance of basin-level analysis for revealing sustainability patterns overlooked by national assessments. This framework can inform future basin research and support policy development in transboundary regions.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"27 ","pages":"Article 100611"},"PeriodicalIF":14.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steep sustainability challenges in transboundary basins worldwide\",\"authors\":\"Yiqi Zhou , Yanfeng Di , Xianjin Huang , Shilin Fu , Xinxian Qi , Chao He , Georgia Destouni\",\"doi\":\"10.1016/j.ese.2025.100611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transboundary hydrological basins span international borders and are essential to global water systems, human development, and environmental sustainability. Nearly 40 % of the world's population lives within these basins, which supply critical resources such as freshwater, food, energy, and biodiversity. Yet their sustainability remains poorly understood, as existing assessments often overlook the unique social, environmental, and political complexities of transboundary basins. This study addresses that gap by developing and applying a systematic framework to assess Sustainable Development Goals (SDGs) progress across 310 transboundary basins worldwide. Here we show that transboundary basins score significantly lower on average SDGs achievement (an SDG Index score of 42 on a scale of 0–100) compared to national averages (a score of 67), with considerable variation between regions. We identify four distinct types of transboundary basins in terms of SDGs achievement and associated challenges. We also show that progress on a specific set of goals can drive broader sustainability within each basin type. Notably, achieving clean water (SDG 6), sustainable economic growth (SDG 8), and healthy livelihoods (SDG 3) is linked to overall SDGs success in 38 % of transboundary basins worldwide. Our results highlight the importance of basin-level analysis for revealing sustainability patterns overlooked by national assessments. This framework can inform future basin research and support policy development in transboundary regions.</div></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"27 \",\"pages\":\"Article 100611\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498425000894\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498425000894","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Steep sustainability challenges in transboundary basins worldwide
Transboundary hydrological basins span international borders and are essential to global water systems, human development, and environmental sustainability. Nearly 40 % of the world's population lives within these basins, which supply critical resources such as freshwater, food, energy, and biodiversity. Yet their sustainability remains poorly understood, as existing assessments often overlook the unique social, environmental, and political complexities of transboundary basins. This study addresses that gap by developing and applying a systematic framework to assess Sustainable Development Goals (SDGs) progress across 310 transboundary basins worldwide. Here we show that transboundary basins score significantly lower on average SDGs achievement (an SDG Index score of 42 on a scale of 0–100) compared to national averages (a score of 67), with considerable variation between regions. We identify four distinct types of transboundary basins in terms of SDGs achievement and associated challenges. We also show that progress on a specific set of goals can drive broader sustainability within each basin type. Notably, achieving clean water (SDG 6), sustainable economic growth (SDG 8), and healthy livelihoods (SDG 3) is linked to overall SDGs success in 38 % of transboundary basins worldwide. Our results highlight the importance of basin-level analysis for revealing sustainability patterns overlooked by national assessments. This framework can inform future basin research and support policy development in transboundary regions.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.