{"title":"外电场在石墨烯基纳米通道中Li+/Na+离子分离中的应用:计算研究","authors":"Zeinab Rahimi , Amir Lohrasebi","doi":"10.1016/j.cap.2025.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses molecular dynamics simulations to investigate the efficient separation of lithium (Li<sup>+</sup>) and sodium (Na<sup>+</sup>) ions in graphene-based nano-channels under the influence of an electric field. The effect of nano-channel dimensions, including length and width, on the ion separation performance was investigated. Our results show that nano-channels with a length of 12 nm and a width of 1.5 nm exhibit optimal ion separation at the present electric field intensity of 4 mV/Å, with lithium ions preferentially accumulating in the designated storage compartments. This separation efficiency is primarily due to the mass-dependent electrophoretic mobility of the ions, with lithium ions migrating faster than sodium ions in the same electric field due to their lower mass and higher acceleration. In addition, the narrow channel width provides a more controlled laminar flow, minimizing turbulence and improving ion transport selectivity. This study also highlights the role of thermal effects, ion diffusion, and electrostatic interactions with the graphene surface in improving the separation process.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"79 ","pages":"Pages 66-76"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of external electric fields for Li+/Na+ ions separation in a graphene-based nano-channel: a computational study\",\"authors\":\"Zeinab Rahimi , Amir Lohrasebi\",\"doi\":\"10.1016/j.cap.2025.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study uses molecular dynamics simulations to investigate the efficient separation of lithium (Li<sup>+</sup>) and sodium (Na<sup>+</sup>) ions in graphene-based nano-channels under the influence of an electric field. The effect of nano-channel dimensions, including length and width, on the ion separation performance was investigated. Our results show that nano-channels with a length of 12 nm and a width of 1.5 nm exhibit optimal ion separation at the present electric field intensity of 4 mV/Å, with lithium ions preferentially accumulating in the designated storage compartments. This separation efficiency is primarily due to the mass-dependent electrophoretic mobility of the ions, with lithium ions migrating faster than sodium ions in the same electric field due to their lower mass and higher acceleration. In addition, the narrow channel width provides a more controlled laminar flow, minimizing turbulence and improving ion transport selectivity. This study also highlights the role of thermal effects, ion diffusion, and electrostatic interactions with the graphene surface in improving the separation process.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"79 \",\"pages\":\"Pages 66-76\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925001592\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001592","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of external electric fields for Li+/Na+ ions separation in a graphene-based nano-channel: a computational study
This study uses molecular dynamics simulations to investigate the efficient separation of lithium (Li+) and sodium (Na+) ions in graphene-based nano-channels under the influence of an electric field. The effect of nano-channel dimensions, including length and width, on the ion separation performance was investigated. Our results show that nano-channels with a length of 12 nm and a width of 1.5 nm exhibit optimal ion separation at the present electric field intensity of 4 mV/Å, with lithium ions preferentially accumulating in the designated storage compartments. This separation efficiency is primarily due to the mass-dependent electrophoretic mobility of the ions, with lithium ions migrating faster than sodium ions in the same electric field due to their lower mass and higher acceleration. In addition, the narrow channel width provides a more controlled laminar flow, minimizing turbulence and improving ion transport selectivity. This study also highlights the role of thermal effects, ion diffusion, and electrostatic interactions with the graphene surface in improving the separation process.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.