Yongmei Zhou, Zhenyang Shen, Pengfei Du, Peng Zhang, Xiaozong Zhang, Can Ma, Qingtao Wang
{"title":"通过阳离子空位调制优化锂离子在lacl3基固体电解质中的扩散途径","authors":"Yongmei Zhou, Zhenyang Shen, Pengfei Du, Peng Zhang, Xiaozong Zhang, Can Ma, Qingtao Wang","doi":"10.1039/d5cc03777h","DOIUrl":null,"url":null,"abstract":"This study introduces controlled lanthanum-site cation vacancies while maintaining a fixed In:La molar ratio of 1:2 and adjusted the LiCl content to increase Li+ concentration, successfully constructing a three-dimensional (3D) lithium-ion diffusion network. This approach effectively overcomes the limitations of the original 1D channels. Experimental results demonstrate that the optimized Li3.6La3.2In1.6Cl18 sample exhibits an exceptional lithium-ion conductivity of 0.17 mS cm-1 at 30°C, coupled with a low migration activation energy of 0.484 eV.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"20 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Lithium-Ion Diffusion Pathways in LaCl3-Based Solid Electrolytes through Cation Vacancy Modulation\",\"authors\":\"Yongmei Zhou, Zhenyang Shen, Pengfei Du, Peng Zhang, Xiaozong Zhang, Can Ma, Qingtao Wang\",\"doi\":\"10.1039/d5cc03777h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces controlled lanthanum-site cation vacancies while maintaining a fixed In:La molar ratio of 1:2 and adjusted the LiCl content to increase Li+ concentration, successfully constructing a three-dimensional (3D) lithium-ion diffusion network. This approach effectively overcomes the limitations of the original 1D channels. Experimental results demonstrate that the optimized Li3.6La3.2In1.6Cl18 sample exhibits an exceptional lithium-ion conductivity of 0.17 mS cm-1 at 30°C, coupled with a low migration activation energy of 0.484 eV.\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cc03777h\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cc03777h","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究在保持固定In:La摩尔比1:2的情况下,通过控制镧位阳离子空位,调节LiCl含量,提高Li+浓度,成功构建了三维锂离子扩散网络。这种方法有效地克服了原有一维通道的局限性。实验结果表明,优化后的Li3.6La3.2In1.6Cl18样品在30℃时的锂离子电导率为0.17 mS cm-1,迁移活化能低至0.484 eV。
Optimizing Lithium-Ion Diffusion Pathways in LaCl3-Based Solid Electrolytes through Cation Vacancy Modulation
This study introduces controlled lanthanum-site cation vacancies while maintaining a fixed In:La molar ratio of 1:2 and adjusted the LiCl content to increase Li+ concentration, successfully constructing a three-dimensional (3D) lithium-ion diffusion network. This approach effectively overcomes the limitations of the original 1D channels. Experimental results demonstrate that the optimized Li3.6La3.2In1.6Cl18 sample exhibits an exceptional lithium-ion conductivity of 0.17 mS cm-1 at 30°C, coupled with a low migration activation energy of 0.484 eV.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.