Yishu Wang, Jianmei Huang, Sixiong Lin, Lei Qin, Dingyu Hao, Peijun Zhang, Shaochuan Huo, Xuenong Zou, Di Chen, Guozhi Xiao
{"title":"骨细胞血管素通过调节mef2c驱动的硬化蛋白表达来控制小鼠骨量","authors":"Yishu Wang, Jianmei Huang, Sixiong Lin, Lei Qin, Dingyu Hao, Peijun Zhang, Shaochuan Huo, Xuenong Zou, Di Chen, Guozhi Xiao","doi":"10.1038/s41413-025-00452-x","DOIUrl":null,"url":null,"abstract":"<p>The focal adhesion (FA) is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function. Here we show that expression of FA protein vinculin is dramatically reduced in osteocytes in patients with aging-related osteoporosis. Vinculin loss severely impaired osteocyte adhesion and dendrite formation. Deleting vinculin using the mouse 10-kb <i>Dmp1-Cre</i> transgenic mice causes dramatic bone loss in the weight-bearing long bones and spine, but not in the skull, in both young and aged mice by impairing osteoblast formation and function without markedly affecting bone resorption. Vinculin loss impairs the anabolic response of skeleton to mechanical loading in mice. Vinculin knockdown increases, while vinculin overexpression decreases, sclerostin expression in osteocytes without impacting expression of Mef2c, a major transcriptional regulator of the <i>Sost</i> gene, which encodes sclerostin. Vinculin interacts with Mef2c and retains the latter in the cytoplasm. Thus, vinculin loss enhances Mef2c nuclear translocation and binding to the <i>Sost</i> enhancer <i>ECR5</i> to promote sclerostin expression in osteocytes and reduces bone formation. Consistent with this notion, deleting <i>Sost</i> expression in osteocytes reverses the osteopenic phenotypes caused by vinculin loss in mice. Finally, we find that estrogen is a novel regulator of vinculin expression in osteocytes and that vinculin-deficient mice are resistant to ovariectomy-induced bone loss. Thus, we demonstrate a novel mechanism through which vinculin inhibits the Mef2c-driven sclerostin expression in osteocytes to promote bone formation.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"8 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteocytic vinculin controls bone mass by modulating Mef2c-driven sclerostin expression in mice\",\"authors\":\"Yishu Wang, Jianmei Huang, Sixiong Lin, Lei Qin, Dingyu Hao, Peijun Zhang, Shaochuan Huo, Xuenong Zou, Di Chen, Guozhi Xiao\",\"doi\":\"10.1038/s41413-025-00452-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The focal adhesion (FA) is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function. Here we show that expression of FA protein vinculin is dramatically reduced in osteocytes in patients with aging-related osteoporosis. Vinculin loss severely impaired osteocyte adhesion and dendrite formation. Deleting vinculin using the mouse 10-kb <i>Dmp1-Cre</i> transgenic mice causes dramatic bone loss in the weight-bearing long bones and spine, but not in the skull, in both young and aged mice by impairing osteoblast formation and function without markedly affecting bone resorption. Vinculin loss impairs the anabolic response of skeleton to mechanical loading in mice. Vinculin knockdown increases, while vinculin overexpression decreases, sclerostin expression in osteocytes without impacting expression of Mef2c, a major transcriptional regulator of the <i>Sost</i> gene, which encodes sclerostin. Vinculin interacts with Mef2c and retains the latter in the cytoplasm. Thus, vinculin loss enhances Mef2c nuclear translocation and binding to the <i>Sost</i> enhancer <i>ECR5</i> to promote sclerostin expression in osteocytes and reduces bone formation. Consistent with this notion, deleting <i>Sost</i> expression in osteocytes reverses the osteopenic phenotypes caused by vinculin loss in mice. Finally, we find that estrogen is a novel regulator of vinculin expression in osteocytes and that vinculin-deficient mice are resistant to ovariectomy-induced bone loss. Thus, we demonstrate a novel mechanism through which vinculin inhibits the Mef2c-driven sclerostin expression in osteocytes to promote bone formation.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-025-00452-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00452-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Osteocytic vinculin controls bone mass by modulating Mef2c-driven sclerostin expression in mice
The focal adhesion (FA) is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function. Here we show that expression of FA protein vinculin is dramatically reduced in osteocytes in patients with aging-related osteoporosis. Vinculin loss severely impaired osteocyte adhesion and dendrite formation. Deleting vinculin using the mouse 10-kb Dmp1-Cre transgenic mice causes dramatic bone loss in the weight-bearing long bones and spine, but not in the skull, in both young and aged mice by impairing osteoblast formation and function without markedly affecting bone resorption. Vinculin loss impairs the anabolic response of skeleton to mechanical loading in mice. Vinculin knockdown increases, while vinculin overexpression decreases, sclerostin expression in osteocytes without impacting expression of Mef2c, a major transcriptional regulator of the Sost gene, which encodes sclerostin. Vinculin interacts with Mef2c and retains the latter in the cytoplasm. Thus, vinculin loss enhances Mef2c nuclear translocation and binding to the Sost enhancer ECR5 to promote sclerostin expression in osteocytes and reduces bone formation. Consistent with this notion, deleting Sost expression in osteocytes reverses the osteopenic phenotypes caused by vinculin loss in mice. Finally, we find that estrogen is a novel regulator of vinculin expression in osteocytes and that vinculin-deficient mice are resistant to ovariectomy-induced bone loss. Thus, we demonstrate a novel mechanism through which vinculin inhibits the Mef2c-driven sclerostin expression in osteocytes to promote bone formation.
期刊介绍:
Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.