心血管减压术中气泡诱导的声软化和血流窒息的体外证据。

IF 4.1 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
V R Sanal Kumar, Pradeep Kumar Radhakrishnan, Dhruv Panchal, Dekkala Vinay, Yash Raj, Raunak Sharma, Yaman Vohra, Shivansh Rana, Sanjay Singh
{"title":"心血管减压术中气泡诱导的声软化和血流窒息的体外证据。","authors":"V R Sanal Kumar, Pradeep Kumar Radhakrishnan, Dhruv Panchal, Dekkala Vinay, Yash Raj, Raunak Sharma, Yaman Vohra, Shivansh Rana, Sanjay Singh","doi":"10.1038/s41526-025-00517-5","DOIUrl":null,"url":null,"abstract":"<p><p>When astronauts or divers experience a rapid drop in surrounding pressure, tiny gas bubbles can form in their blood-a condition that can threaten heart and vessel function. In this study, we simulated such decompression using fresh, warmed blood samples (37-40 °C) placed in a vacuum chamber. Bubbles consistently appeared near 600 mmHg. Their formation led to acoustic softening, a sharp drop in the speed of sound through blood. As flow velocity remained unchanged, the rising local Mach number brought the system closer to Sanal flow choking, triggered at a critical pressure ratio. Once choking occurs, it can lead to localized supersonic zones and abrupt pressure jumps. Additionally, bubbles may coalesce and block narrow vessels-a phenomenon akin to vapor lock-further impeding circulation. These findings reveal a novel mechanistic link between microbubble formation, acoustic softening, and flow choking, offering valuable insights for protecting cardiovascular health during spaceflight and rapid decompression events.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"54"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339919/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vitro evidence of bubble-induced acoustic softening and Sanal flow choking in cardiovascular decompression.\",\"authors\":\"V R Sanal Kumar, Pradeep Kumar Radhakrishnan, Dhruv Panchal, Dekkala Vinay, Yash Raj, Raunak Sharma, Yaman Vohra, Shivansh Rana, Sanjay Singh\",\"doi\":\"10.1038/s41526-025-00517-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When astronauts or divers experience a rapid drop in surrounding pressure, tiny gas bubbles can form in their blood-a condition that can threaten heart and vessel function. In this study, we simulated such decompression using fresh, warmed blood samples (37-40 °C) placed in a vacuum chamber. Bubbles consistently appeared near 600 mmHg. Their formation led to acoustic softening, a sharp drop in the speed of sound through blood. As flow velocity remained unchanged, the rising local Mach number brought the system closer to Sanal flow choking, triggered at a critical pressure ratio. Once choking occurs, it can lead to localized supersonic zones and abrupt pressure jumps. Additionally, bubbles may coalesce and block narrow vessels-a phenomenon akin to vapor lock-further impeding circulation. These findings reveal a novel mechanistic link between microbubble formation, acoustic softening, and flow choking, offering valuable insights for protecting cardiovascular health during spaceflight and rapid decompression events.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"11 1\",\"pages\":\"54\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339919/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-025-00517-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00517-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

当宇航员或潜水员经历周围压力的快速下降时,他们的血液中会形成微小的气泡——这种情况会威胁到心脏和血管的功能。在这项研究中,我们使用放置在真空室中的新鲜、加热的血液样本(37-40°C)来模拟这种减压。气泡持续出现在600毫米汞柱附近。它们的形成导致了声音软化,声音通过血液的速度急剧下降。在流速保持不变的情况下,局部马赫数的上升使系统更接近Sanal流阻塞,并在临界压力比下触发。一旦发生窒息,就会导致局部超声速区和突然的压力跳变。此外,气泡可能会聚集并堵塞狭窄的血管——一种类似于蒸汽锁的现象——进一步阻碍循环。这些发现揭示了微泡形成、声学软化和流动窒息之间的一种新的机制联系,为在航天飞行和快速减压事件中保护心血管健康提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vitro evidence of bubble-induced acoustic softening and Sanal flow choking in cardiovascular decompression.

When astronauts or divers experience a rapid drop in surrounding pressure, tiny gas bubbles can form in their blood-a condition that can threaten heart and vessel function. In this study, we simulated such decompression using fresh, warmed blood samples (37-40 °C) placed in a vacuum chamber. Bubbles consistently appeared near 600 mmHg. Their formation led to acoustic softening, a sharp drop in the speed of sound through blood. As flow velocity remained unchanged, the rising local Mach number brought the system closer to Sanal flow choking, triggered at a critical pressure ratio. Once choking occurs, it can lead to localized supersonic zones and abrupt pressure jumps. Additionally, bubbles may coalesce and block narrow vessels-a phenomenon akin to vapor lock-further impeding circulation. These findings reveal a novel mechanistic link between microbubble formation, acoustic softening, and flow choking, offering valuable insights for protecting cardiovascular health during spaceflight and rapid decompression events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信