埋在冰中的球形固体的超声成像。

IF 4.1 2区 物理与天体物理 Q1 ACOUSTICS
Francesco Simonetti
{"title":"埋在冰中的球形固体的超声成像。","authors":"Francesco Simonetti","doi":"10.1016/j.ultras.2025.107779","DOIUrl":null,"url":null,"abstract":"<p><p>The transmission of compressional ultrasonic waves into a rigid and dense solid with a doubly-curved surface is impeded when the solid is placed in a liquid medium and its surface is irradiated with waves traveling through the liquid. Measurable power transmission is only possible when the incident ultrasonic beam is close to normal to the surface. This condition is difficult to realize when the waves are excited and detected by a linear array of transducers and limits the possibility of forming cross-sectional images of the solid from the array data. Here, it is shown that the interior of the solid can be imaged with enhanced fidelity if the water is frozen. The high speed of compressional waves in polycrystalline ice (approximately 4000 ms<sup>-1</sup>) along with its rigid behavior ensure that ultrasonic waves can be transmitted through the surface over a broad range of angles of incidence. However, due to the double curvature, the rays that form the ultrasonic beam can be deflected outside the array azimuthal plane after entering the solid. Therefore, the two-dimensional images obtained from the linear array data may not be consistent with the fully three-dimensional structure of the ray paths. The analysis of this phenomenon for the special case of solid spheres reveals that the image, to a good approximation, corresponds to a section of the sphere that is parallel to the azimuthal plane and at a standoff distance from it. The distance increases with the angle that the normal to the surface forms relative to the azimuthal plane while it decreases as the velocity contrast between ice and the material of the sphere decreases. While this property is not expected to hold for more complex surfaces, the ray-based framework used in this study is applicable to more general surface configurations and can be used to correlate the images to the structure of the solid. These findings are relevant to the inspection of metallic components with complex geometry which represents a long-standing challenge in the field of nondestructive testing.</p>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"157 ","pages":"107779"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic imaging of spherical solids embedded in ice.\",\"authors\":\"Francesco Simonetti\",\"doi\":\"10.1016/j.ultras.2025.107779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The transmission of compressional ultrasonic waves into a rigid and dense solid with a doubly-curved surface is impeded when the solid is placed in a liquid medium and its surface is irradiated with waves traveling through the liquid. Measurable power transmission is only possible when the incident ultrasonic beam is close to normal to the surface. This condition is difficult to realize when the waves are excited and detected by a linear array of transducers and limits the possibility of forming cross-sectional images of the solid from the array data. Here, it is shown that the interior of the solid can be imaged with enhanced fidelity if the water is frozen. The high speed of compressional waves in polycrystalline ice (approximately 4000 ms<sup>-1</sup>) along with its rigid behavior ensure that ultrasonic waves can be transmitted through the surface over a broad range of angles of incidence. However, due to the double curvature, the rays that form the ultrasonic beam can be deflected outside the array azimuthal plane after entering the solid. Therefore, the two-dimensional images obtained from the linear array data may not be consistent with the fully three-dimensional structure of the ray paths. The analysis of this phenomenon for the special case of solid spheres reveals that the image, to a good approximation, corresponds to a section of the sphere that is parallel to the azimuthal plane and at a standoff distance from it. The distance increases with the angle that the normal to the surface forms relative to the azimuthal plane while it decreases as the velocity contrast between ice and the material of the sphere decreases. While this property is not expected to hold for more complex surfaces, the ray-based framework used in this study is applicable to more general surface configurations and can be used to correlate the images to the structure of the solid. These findings are relevant to the inspection of metallic components with complex geometry which represents a long-standing challenge in the field of nondestructive testing.</p>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"157 \",\"pages\":\"107779\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ultras.2025.107779\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.ultras.2025.107779","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

当固体置于液体介质中,并且其表面受到穿过液体的波的照射时,压缩超声波向具有双曲面的刚性致密固体的传播受到阻碍。只有当入射的超声波光束接近于表面的法线时,才有可能测量功率传输。当波被传感器的线性阵列激发和检测时,这种情况很难实现,并且限制了从阵列数据形成固体截面图像的可能性。在这里,它表明,固体的内部可以成像与增强的保真度,如果水是冻结的。多晶冰中高速的纵波(约4000 ms-1)及其刚性特性保证了超声波可以在很宽的入射角范围内通过表面传播。然而,由于双曲率的存在,形成超声光束的射线在进入固体后会偏转到阵列方位面外。因此,从线阵数据得到的二维图像可能与射线路径的完全三维结构不一致。对实心球的特殊情况的这种现象的分析表明,在很好的近似下,图像对应于与方位面平行并与方位面保持距离的球面的一部分。距离随着表面法线相对于方位面形成的角度而增加,而随着冰与球体材料之间的速度对比减小而减小。虽然这一特性并不适用于更复杂的表面,但本研究中使用的基于光线的框架适用于更一般的表面配置,并可用于将图像与固体结构相关联。这些发现与具有复杂几何形状的金属部件的检测有关,这是无损检测领域的一个长期挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasonic imaging of spherical solids embedded in ice.

The transmission of compressional ultrasonic waves into a rigid and dense solid with a doubly-curved surface is impeded when the solid is placed in a liquid medium and its surface is irradiated with waves traveling through the liquid. Measurable power transmission is only possible when the incident ultrasonic beam is close to normal to the surface. This condition is difficult to realize when the waves are excited and detected by a linear array of transducers and limits the possibility of forming cross-sectional images of the solid from the array data. Here, it is shown that the interior of the solid can be imaged with enhanced fidelity if the water is frozen. The high speed of compressional waves in polycrystalline ice (approximately 4000 ms-1) along with its rigid behavior ensure that ultrasonic waves can be transmitted through the surface over a broad range of angles of incidence. However, due to the double curvature, the rays that form the ultrasonic beam can be deflected outside the array azimuthal plane after entering the solid. Therefore, the two-dimensional images obtained from the linear array data may not be consistent with the fully three-dimensional structure of the ray paths. The analysis of this phenomenon for the special case of solid spheres reveals that the image, to a good approximation, corresponds to a section of the sphere that is parallel to the azimuthal plane and at a standoff distance from it. The distance increases with the angle that the normal to the surface forms relative to the azimuthal plane while it decreases as the velocity contrast between ice and the material of the sphere decreases. While this property is not expected to hold for more complex surfaces, the ray-based framework used in this study is applicable to more general surface configurations and can be used to correlate the images to the structure of the solid. These findings are relevant to the inspection of metallic components with complex geometry which represents a long-standing challenge in the field of nondestructive testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信