{"title":"CRISPR/Cas系统介导的植物无转基因或无dna基因组编辑。","authors":"Rongxiao Cai, Nan Chai, Jiekun Zhang, Jiantao Tan, Yao-Guang Liu, Qinlong Zhu, Dongchang Zeng","doi":"10.1007/s00122-025-04990-0","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas-based genome-editing technology serves as a powerful and versatile tool for genome modification. It has been broadly utilized in crop breeding to enhance traits such as yield, various quality attributes, and biotic and abiotic stress tolerance. Because of public safety concerns over genetically modified organisms (GMOs), many countries have established stringent regulatory policies for genetically modified plants, dramatically limiting the application of related products. However, genome editing in stably transformed plants can result in transgene-free progeny through self-pollination or hybridization or yield DNA-free gene-edited plants via transient transformation. These edited plants materially differ from GMOs and are referred to as genome-edited organisms (GEOs). GEOs have the potential to alleviate regulatory burdens and aid in commercialization. Various methods have been developed to expedite the creation of transgene-free or DNA-free GEOs. This review summarizes the various strategies for creating these types of GEOs based on the CRISPR/Cas systems. It also covers the advantages and drawbacks of these strategies. Additionally, we examine off-target effects and mitigation strategies for plant genome editing and outline regulatory policies for gene-edited crops in selected countries and regions. We hope this review offers valuable references for the advancement of transgene-free and DNA-free GEOs.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 9","pages":"210"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas system-mediated transgene-free or DNA-free genome editing in plants.\",\"authors\":\"Rongxiao Cai, Nan Chai, Jiekun Zhang, Jiantao Tan, Yao-Guang Liu, Qinlong Zhu, Dongchang Zeng\",\"doi\":\"10.1007/s00122-025-04990-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR/Cas-based genome-editing technology serves as a powerful and versatile tool for genome modification. It has been broadly utilized in crop breeding to enhance traits such as yield, various quality attributes, and biotic and abiotic stress tolerance. Because of public safety concerns over genetically modified organisms (GMOs), many countries have established stringent regulatory policies for genetically modified plants, dramatically limiting the application of related products. However, genome editing in stably transformed plants can result in transgene-free progeny through self-pollination or hybridization or yield DNA-free gene-edited plants via transient transformation. These edited plants materially differ from GMOs and are referred to as genome-edited organisms (GEOs). GEOs have the potential to alleviate regulatory burdens and aid in commercialization. Various methods have been developed to expedite the creation of transgene-free or DNA-free GEOs. This review summarizes the various strategies for creating these types of GEOs based on the CRISPR/Cas systems. It also covers the advantages and drawbacks of these strategies. Additionally, we examine off-target effects and mitigation strategies for plant genome editing and outline regulatory policies for gene-edited crops in selected countries and regions. We hope this review offers valuable references for the advancement of transgene-free and DNA-free GEOs.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"138 9\",\"pages\":\"210\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-025-04990-0\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04990-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
CRISPR/Cas system-mediated transgene-free or DNA-free genome editing in plants.
CRISPR/Cas-based genome-editing technology serves as a powerful and versatile tool for genome modification. It has been broadly utilized in crop breeding to enhance traits such as yield, various quality attributes, and biotic and abiotic stress tolerance. Because of public safety concerns over genetically modified organisms (GMOs), many countries have established stringent regulatory policies for genetically modified plants, dramatically limiting the application of related products. However, genome editing in stably transformed plants can result in transgene-free progeny through self-pollination or hybridization or yield DNA-free gene-edited plants via transient transformation. These edited plants materially differ from GMOs and are referred to as genome-edited organisms (GEOs). GEOs have the potential to alleviate regulatory burdens and aid in commercialization. Various methods have been developed to expedite the creation of transgene-free or DNA-free GEOs. This review summarizes the various strategies for creating these types of GEOs based on the CRISPR/Cas systems. It also covers the advantages and drawbacks of these strategies. Additionally, we examine off-target effects and mitigation strategies for plant genome editing and outline regulatory policies for gene-edited crops in selected countries and regions. We hope this review offers valuable references for the advancement of transgene-free and DNA-free GEOs.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.