{"title":"双负载nioase -dendrimer纳米平台增强Tirapazamine向缺氧乳腺癌细胞的递送。","authors":"Masoumeh Kaveh Zenjanab, Aysan Salemi, Abolfazl Doustmihan, Sajjad Alimohammadvand, Rana Jahanban Esfahlan","doi":"10.1038/s41598-025-14704-7","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is one of the most common cancers in women, requiring comprehensive treatment strategies to reduce disease burden and costs. In this study, we developed an innovative dual nanoparticle system based on niosome containing PAMAM/Tirapazamine (N@P/T), and studied its efficacy combining in silico and experimental validation. Molecular docking and protein-protein interaction network analysis identified HIF1A as a central target for Tirapazamine (TPZ), revealing multiple high-confidence binding sites and interactions with key cancer-related pathways. Our synthesized N@P/T system using the thin film hydration method showed a size of ~ 200 nm, a zeta potential of - 4 mV, and a spherical morphology. Further, MTT results demonstrated that N@P/T significantly enhances anti-cancer effects compared to P/T and free TPZ, exhibiting the lowest IC50 value of 14.14 μM, which indicates superior cytotoxic efficiency compared to P/T (IC50 = 71.37 μM) and free TPZ (IC50 = 143.3 μM). Annexin-V FITC/Pi double staining showed enhanced apoptosis-promoting effects of P/T (44.28%) and N@P/T (65.33%), partially via affecting expression levels of BCL2, caspase3 and BAX. The uptake assay revealed substantial internalization of N@P/T over 90% by 4h, while real-time PCR validated the HIF1A as a target for TPZ under hypoxia-stimulated condition. Furthermore, the spheroid size test demonstrates the superior penetration capability of N@P/T, leading to significant alterations in tumor spheroid size and morphology. Our integrated computational and experimental approach demonstrates that N@P/T effectively targets hypoxic cancer cells through specific molecular interactions, offering a promising strategy for BC treatment.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29308"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339735/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual-loaded niosome-dendrimer nanoplatform enhances Tirapazamine delivery to hypoxic breast cancer cells.\",\"authors\":\"Masoumeh Kaveh Zenjanab, Aysan Salemi, Abolfazl Doustmihan, Sajjad Alimohammadvand, Rana Jahanban Esfahlan\",\"doi\":\"10.1038/s41598-025-14704-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer (BC) is one of the most common cancers in women, requiring comprehensive treatment strategies to reduce disease burden and costs. In this study, we developed an innovative dual nanoparticle system based on niosome containing PAMAM/Tirapazamine (N@P/T), and studied its efficacy combining in silico and experimental validation. Molecular docking and protein-protein interaction network analysis identified HIF1A as a central target for Tirapazamine (TPZ), revealing multiple high-confidence binding sites and interactions with key cancer-related pathways. Our synthesized N@P/T system using the thin film hydration method showed a size of ~ 200 nm, a zeta potential of - 4 mV, and a spherical morphology. Further, MTT results demonstrated that N@P/T significantly enhances anti-cancer effects compared to P/T and free TPZ, exhibiting the lowest IC50 value of 14.14 μM, which indicates superior cytotoxic efficiency compared to P/T (IC50 = 71.37 μM) and free TPZ (IC50 = 143.3 μM). Annexin-V FITC/Pi double staining showed enhanced apoptosis-promoting effects of P/T (44.28%) and N@P/T (65.33%), partially via affecting expression levels of BCL2, caspase3 and BAX. The uptake assay revealed substantial internalization of N@P/T over 90% by 4h, while real-time PCR validated the HIF1A as a target for TPZ under hypoxia-stimulated condition. Furthermore, the spheroid size test demonstrates the superior penetration capability of N@P/T, leading to significant alterations in tumor spheroid size and morphology. Our integrated computational and experimental approach demonstrates that N@P/T effectively targets hypoxic cancer cells through specific molecular interactions, offering a promising strategy for BC treatment.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"29308\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339735/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-14704-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-14704-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Dual-loaded niosome-dendrimer nanoplatform enhances Tirapazamine delivery to hypoxic breast cancer cells.
Breast cancer (BC) is one of the most common cancers in women, requiring comprehensive treatment strategies to reduce disease burden and costs. In this study, we developed an innovative dual nanoparticle system based on niosome containing PAMAM/Tirapazamine (N@P/T), and studied its efficacy combining in silico and experimental validation. Molecular docking and protein-protein interaction network analysis identified HIF1A as a central target for Tirapazamine (TPZ), revealing multiple high-confidence binding sites and interactions with key cancer-related pathways. Our synthesized N@P/T system using the thin film hydration method showed a size of ~ 200 nm, a zeta potential of - 4 mV, and a spherical morphology. Further, MTT results demonstrated that N@P/T significantly enhances anti-cancer effects compared to P/T and free TPZ, exhibiting the lowest IC50 value of 14.14 μM, which indicates superior cytotoxic efficiency compared to P/T (IC50 = 71.37 μM) and free TPZ (IC50 = 143.3 μM). Annexin-V FITC/Pi double staining showed enhanced apoptosis-promoting effects of P/T (44.28%) and N@P/T (65.33%), partially via affecting expression levels of BCL2, caspase3 and BAX. The uptake assay revealed substantial internalization of N@P/T over 90% by 4h, while real-time PCR validated the HIF1A as a target for TPZ under hypoxia-stimulated condition. Furthermore, the spheroid size test demonstrates the superior penetration capability of N@P/T, leading to significant alterations in tumor spheroid size and morphology. Our integrated computational and experimental approach demonstrates that N@P/T effectively targets hypoxic cancer cells through specific molecular interactions, offering a promising strategy for BC treatment.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.