{"title":"基于gan的玉米不同品种和发育阶段生长图像预测。","authors":"Xinyi Wang, Shilong Liu, Zhihao Wang, Zedong Geng, Weikun Li, Chengxiu Wu, Yingjie Xiao, Wanneng Yang, Lingfeng Duan","doi":"10.1186/s13007-025-01430-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plant growth prediction assists physiologists and botanists in analyzing future development trends, thereby shortening experimental cycles and reducing costs. Traditional growth prediction methods mainly focused on phenotypic traits instead of images, which leads to limited visual interpretability.</p><p><strong>Results: </strong>This article proposed a visualized growth prediction method based on an improved Pix2PixHD network, incorporating spatial attention mechanisms, an improved loss function, and a modified dropout strategy to enhance prediction accuracy and visual fidelity. The proposed method can employ maize images from early time points to predict the images of later stages. The prediction results are presented in the form of side-view growth images with a resolution of 1024 × 1024 pixels, enabling the capture of detailed, organ-level growth information. This study conducted experiments on 696 varieties, a highly genetically diverse maize population derived from the crossbreeding of 24 foundational Chinese inbred lines. The results showed that Fréchet Inception Distance, Peak Signal-to-Noise Ratio and structural similarity between the predicted images and the actual images reached 20.27, 23.23 and 0.899, respectively. The model achieved a mean Pearson correlation coefficient of 0.939 between predicted and actual phenotypic traits, while maintaining robust performance across different time intervals. It was also demonstrated that the model outperformed the existing related studies. The code is available online.</p><p><strong>Conclusion: </strong>The results showed that the method can make realistic predictions of multi-variety maize growth based on high-resolution generation. Furthermore, it can achieve prediction of maize growth throughout the entire growth cycle with high accuracy. In conclusion, this article provided a novel solution for visualized growth prediction of large plants with complex physiological structures throughout the entire growth cycle. A primary limitation of this study is its focus on modeling and predicting crop growth under uniform environmental conditions, without considering environmental variability. Future work will aim to incorporate diverse environmental factors into the model to enhance its robustness and predictive accuracy.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"110"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337507/pdf/","citationCount":"0","resultStr":"{\"title\":\"GAN-based image prediction of maize growth across varieties and developmental stages.\",\"authors\":\"Xinyi Wang, Shilong Liu, Zhihao Wang, Zedong Geng, Weikun Li, Chengxiu Wu, Yingjie Xiao, Wanneng Yang, Lingfeng Duan\",\"doi\":\"10.1186/s13007-025-01430-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Plant growth prediction assists physiologists and botanists in analyzing future development trends, thereby shortening experimental cycles and reducing costs. Traditional growth prediction methods mainly focused on phenotypic traits instead of images, which leads to limited visual interpretability.</p><p><strong>Results: </strong>This article proposed a visualized growth prediction method based on an improved Pix2PixHD network, incorporating spatial attention mechanisms, an improved loss function, and a modified dropout strategy to enhance prediction accuracy and visual fidelity. The proposed method can employ maize images from early time points to predict the images of later stages. The prediction results are presented in the form of side-view growth images with a resolution of 1024 × 1024 pixels, enabling the capture of detailed, organ-level growth information. This study conducted experiments on 696 varieties, a highly genetically diverse maize population derived from the crossbreeding of 24 foundational Chinese inbred lines. The results showed that Fréchet Inception Distance, Peak Signal-to-Noise Ratio and structural similarity between the predicted images and the actual images reached 20.27, 23.23 and 0.899, respectively. The model achieved a mean Pearson correlation coefficient of 0.939 between predicted and actual phenotypic traits, while maintaining robust performance across different time intervals. It was also demonstrated that the model outperformed the existing related studies. The code is available online.</p><p><strong>Conclusion: </strong>The results showed that the method can make realistic predictions of multi-variety maize growth based on high-resolution generation. Furthermore, it can achieve prediction of maize growth throughout the entire growth cycle with high accuracy. In conclusion, this article provided a novel solution for visualized growth prediction of large plants with complex physiological structures throughout the entire growth cycle. A primary limitation of this study is its focus on modeling and predicting crop growth under uniform environmental conditions, without considering environmental variability. Future work will aim to incorporate diverse environmental factors into the model to enhance its robustness and predictive accuracy.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"110\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01430-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01430-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
GAN-based image prediction of maize growth across varieties and developmental stages.
Background: Plant growth prediction assists physiologists and botanists in analyzing future development trends, thereby shortening experimental cycles and reducing costs. Traditional growth prediction methods mainly focused on phenotypic traits instead of images, which leads to limited visual interpretability.
Results: This article proposed a visualized growth prediction method based on an improved Pix2PixHD network, incorporating spatial attention mechanisms, an improved loss function, and a modified dropout strategy to enhance prediction accuracy and visual fidelity. The proposed method can employ maize images from early time points to predict the images of later stages. The prediction results are presented in the form of side-view growth images with a resolution of 1024 × 1024 pixels, enabling the capture of detailed, organ-level growth information. This study conducted experiments on 696 varieties, a highly genetically diverse maize population derived from the crossbreeding of 24 foundational Chinese inbred lines. The results showed that Fréchet Inception Distance, Peak Signal-to-Noise Ratio and structural similarity between the predicted images and the actual images reached 20.27, 23.23 and 0.899, respectively. The model achieved a mean Pearson correlation coefficient of 0.939 between predicted and actual phenotypic traits, while maintaining robust performance across different time intervals. It was also demonstrated that the model outperformed the existing related studies. The code is available online.
Conclusion: The results showed that the method can make realistic predictions of multi-variety maize growth based on high-resolution generation. Furthermore, it can achieve prediction of maize growth throughout the entire growth cycle with high accuracy. In conclusion, this article provided a novel solution for visualized growth prediction of large plants with complex physiological structures throughout the entire growth cycle. A primary limitation of this study is its focus on modeling and predicting crop growth under uniform environmental conditions, without considering environmental variability. Future work will aim to incorporate diverse environmental factors into the model to enhance its robustness and predictive accuracy.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.