极化纯度和跨通道强度相关性。

IF 1.5 3区 物理与天体物理 Q3 OPTICS
Daniel Kestner, Alexander Kostinski
{"title":"极化纯度和跨通道强度相关性。","authors":"Daniel Kestner, Alexander Kostinski","doi":"10.1364/JOSAA.564696","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the question of monitoring polarization purity, that is, measuring deviations from orthogonality <i>δ</i><sub>τ</sub> and <i>δ</i><sub>ϵ</sub> of an ostensibly orthogonal polarization basis with a reference channel of ellipticity <i>ϵ</i> and tilt <i>τ</i>. A simple result was recently derived for a phase-sensitive receiver observing unpolarized radiation [IEEE Trans. Geosci. Remote Sens.62, 2003610 (2024)10.1109/TGRS.2024.3380531]: with <i>ρ</i><sup>(1)</sup> denoting the Pearson complex correlation coefficient between channel <i>complex fields</i>, it states that ∓<i>cos</i>⁡(2<i>ϵ</i>)<i>δ</i><sub>τ</sub>±<i>i</i><i>δ</i><sub>ϵ</sub>≈<i>ρ</i><sup>(1)</sup> when <i>δ</i><sub><i>τ</i>,<i>ϵ</i></sub>≪1. However, phase-sensitive (in-phase and quadrature) data are seldom available at optical frequencies. To that end, here we generalize the result by deriving a new equation for the polarization \"alignment\" error: <i>cos</i><sup>2</sup>(2<i>ϵ</i>)<i>δ</i><i>τ</i>2+<i>δ</i><sub>ϵ</sub><sup>2</sup>≈<i>ρ</i><sup>(2)</sup>, where <i>ρ</i><sup>(2)</sup> is the intensity cross-correlation coefficient. Only the measurement of the <i>(real) intensity</i> cross-correlation coefficient is needed when observing unpolarized light. For the special case of a linearly polarized basis, the tilt error is simply <i>δ</i><sub>τ</sub>≈<i>ρ</i><sup>(2)</sup>, and for the circular basis case, with ellipticity deviation <i>δ</i><sub>ϵ</sub> from circular helicity <i>π</i>/4 (the reference channel of opposite helicity), <i>δ</i><sub>ϵ</sub>≈<i>ρ</i><sup>(2)</sup>. These results provide simple means to gauge the quality of polarimeters and depolarizers.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"42 8","pages":"1077-1081"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization purity and cross-channel intensity correlations.\",\"authors\":\"Daniel Kestner, Alexander Kostinski\",\"doi\":\"10.1364/JOSAA.564696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the question of monitoring polarization purity, that is, measuring deviations from orthogonality <i>δ</i><sub>τ</sub> and <i>δ</i><sub>ϵ</sub> of an ostensibly orthogonal polarization basis with a reference channel of ellipticity <i>ϵ</i> and tilt <i>τ</i>. A simple result was recently derived for a phase-sensitive receiver observing unpolarized radiation [IEEE Trans. Geosci. Remote Sens.62, 2003610 (2024)10.1109/TGRS.2024.3380531]: with <i>ρ</i><sup>(1)</sup> denoting the Pearson complex correlation coefficient between channel <i>complex fields</i>, it states that ∓<i>cos</i>⁡(2<i>ϵ</i>)<i>δ</i><sub>τ</sub>±<i>i</i><i>δ</i><sub>ϵ</sub>≈<i>ρ</i><sup>(1)</sup> when <i>δ</i><sub><i>τ</i>,<i>ϵ</i></sub>≪1. However, phase-sensitive (in-phase and quadrature) data are seldom available at optical frequencies. To that end, here we generalize the result by deriving a new equation for the polarization \\\"alignment\\\" error: <i>cos</i><sup>2</sup>(2<i>ϵ</i>)<i>δ</i><i>τ</i>2+<i>δ</i><sub>ϵ</sub><sup>2</sup>≈<i>ρ</i><sup>(2)</sup>, where <i>ρ</i><sup>(2)</sup> is the intensity cross-correlation coefficient. Only the measurement of the <i>(real) intensity</i> cross-correlation coefficient is needed when observing unpolarized light. For the special case of a linearly polarized basis, the tilt error is simply <i>δ</i><sub>τ</sub>≈<i>ρ</i><sup>(2)</sup>, and for the circular basis case, with ellipticity deviation <i>δ</i><sub>ϵ</sub> from circular helicity <i>π</i>/4 (the reference channel of opposite helicity), <i>δ</i><sub>ϵ</sub>≈<i>ρ</i><sup>(2)</sup>. These results provide simple means to gauge the quality of polarimeters and depolarizers.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":\"42 8\",\"pages\":\"1077-1081\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.564696\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.564696","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑监测极化纯度的问题,即测量表面正交极化基的正交性δτ和δ λ的偏差,参考通道为椭圆度λ和倾斜τ。用相敏接收机观测非极化辐射,最近得到了一个简单的结果。Geosci。[遥感].62,2003610 (2024)10.1109/TGRS.2024.3380531]:其中ρ(1)表示通道复场之间的Pearson复相关系数,说明δτ、δτ±iδ λ≈ρ(1)时,δτ、δτ≪1。然而,相位敏感(同相和正交)数据很少在光学频率上可用。为此,在这里我们通过推导一个新的极化“对准”误差方程来推广结果:cos2(2λ)δτ2+δϵ2≈ρ(2),其中ρ(2)是强度相互关联系数。在观测非偏振光时,只需要测量(实际)强度互相关系数。对于线性极化基的特殊情况,倾斜误差仅为δτ≈ρ(2),对于圆形基的情况,由于椭圆度偏离圆形螺旋度π/4(相反螺旋度的参考通道),δ λ≈ρ(2)。这些结果提供了简单的方法来衡量偏振计和退偏振器的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polarization purity and cross-channel intensity correlations.

We consider the question of monitoring polarization purity, that is, measuring deviations from orthogonality δτ and δϵ of an ostensibly orthogonal polarization basis with a reference channel of ellipticity ϵ and tilt τ. A simple result was recently derived for a phase-sensitive receiver observing unpolarized radiation [IEEE Trans. Geosci. Remote Sens.62, 2003610 (2024)10.1109/TGRS.2024.3380531]: with ρ(1) denoting the Pearson complex correlation coefficient between channel complex fields, it states that ∓cos⁡(2ϵ)δτ±iδϵρ(1) when δτ,ϵ≪1. However, phase-sensitive (in-phase and quadrature) data are seldom available at optical frequencies. To that end, here we generalize the result by deriving a new equation for the polarization "alignment" error: cos2(2ϵ)δτ2+δϵ2ρ(2), where ρ(2) is the intensity cross-correlation coefficient. Only the measurement of the (real) intensity cross-correlation coefficient is needed when observing unpolarized light. For the special case of a linearly polarized basis, the tilt error is simply δτρ(2), and for the circular basis case, with ellipticity deviation δϵ from circular helicity π/4 (the reference channel of opposite helicity), δϵρ(2). These results provide simple means to gauge the quality of polarimeters and depolarizers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信