用于治疗肺部感染的可吸入纳米颗粒递送系统:现状和克服障碍的策略。

IF 8.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-08-11 DOI:10.1080/10717544.2025.2544683
Yihong Gao, Wenhao Wang, Xiao Yue, Guanlin Wang, Kaiqing Zhang, Chuanbin Wu, Ziyu Zhao, Zhengwei Huang, Xuejuan Zhang
{"title":"用于治疗肺部感染的可吸入纳米颗粒递送系统:现状和克服障碍的策略。","authors":"Yihong Gao, Wenhao Wang, Xiao Yue, Guanlin Wang, Kaiqing Zhang, Chuanbin Wu, Ziyu Zhao, Zhengwei Huang, Xuejuan Zhang","doi":"10.1080/10717544.2025.2544683","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary infection is a serious public health challenge with high morbidity and mortality. The employment of antibiotics is the first-line treatment for pulmonary infections, while other novel anti-infection agents, such as antimicrobial peptides, have also been developed due to the emergence of drug resistance. Recently, inhalable nanoparticle-based delivery systems have garnered significant attention for the delivery of anti-infection agents, which possess great advantages like high lung accumulations and precise delivery performances. However, the respiratory physiological structure, mucus and biofilm have been considered as the barriers that nanoparticle drug delivery systems facing, which compromise the therapeutic effects. In this integrative review, recent advances in the inhalable nanoparticle-based delivery system were introduced. In addition, we focused on the biological characteristics of these barriers and discussed effective strategies to overcome the obstacles, including precise deposition in the lower respiratory tract infection site, effective penetration of mucus and breaking of the biofilm barrier. To sum up, this review aimed to deepen the understanding of the fate of anti-infective nanoformulations in pulmonary delivery and find effective strategies to address the barriers, thus providing new insights for the development of pulmonary delivery systems against pulmonary infections.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2544683"},"PeriodicalIF":8.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhalable nanoparticle-based delivery systems for the treatment of pulmonary infections: <i>Status quo</i> and barrier-overcoming strategies.\",\"authors\":\"Yihong Gao, Wenhao Wang, Xiao Yue, Guanlin Wang, Kaiqing Zhang, Chuanbin Wu, Ziyu Zhao, Zhengwei Huang, Xuejuan Zhang\",\"doi\":\"10.1080/10717544.2025.2544683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary infection is a serious public health challenge with high morbidity and mortality. The employment of antibiotics is the first-line treatment for pulmonary infections, while other novel anti-infection agents, such as antimicrobial peptides, have also been developed due to the emergence of drug resistance. Recently, inhalable nanoparticle-based delivery systems have garnered significant attention for the delivery of anti-infection agents, which possess great advantages like high lung accumulations and precise delivery performances. However, the respiratory physiological structure, mucus and biofilm have been considered as the barriers that nanoparticle drug delivery systems facing, which compromise the therapeutic effects. In this integrative review, recent advances in the inhalable nanoparticle-based delivery system were introduced. In addition, we focused on the biological characteristics of these barriers and discussed effective strategies to overcome the obstacles, including precise deposition in the lower respiratory tract infection site, effective penetration of mucus and breaking of the biofilm barrier. To sum up, this review aimed to deepen the understanding of the fate of anti-infective nanoformulations in pulmonary delivery and find effective strategies to address the barriers, thus providing new insights for the development of pulmonary delivery systems against pulmonary infections.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"32 1\",\"pages\":\"2544683\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2025.2544683\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2544683","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

肺部感染是一个严重的公共卫生挑战,具有高发病率和死亡率。抗生素的使用是肺部感染的一线治疗方法,而其他新型抗感染药物,如抗菌肽,也因耐药性的出现而被开发出来。近年来,基于可吸入纳米颗粒的抗感染药物递送系统引起了人们的广泛关注,该系统具有高肺蓄积量和精确递送性能等优点。然而,呼吸生理结构、黏液和生物膜一直被认为是纳米颗粒给药系统面临的障碍,影响了治疗效果。在这篇综合综述中,介绍了可吸入纳米颗粒基给药系统的最新进展。此外,我们重点研究了这些屏障的生物学特性,并讨论了克服这些障碍的有效策略,包括在下呼吸道感染部位精确沉积,有效穿透粘液和打破生物膜屏障。综上所述,本综述旨在加深对抗感染纳米制剂在肺传递中的命运的理解,并找到有效的策略来解决这些障碍,从而为开发抗肺部感染的肺传递系统提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhalable nanoparticle-based delivery systems for the treatment of pulmonary infections: Status quo and barrier-overcoming strategies.

Pulmonary infection is a serious public health challenge with high morbidity and mortality. The employment of antibiotics is the first-line treatment for pulmonary infections, while other novel anti-infection agents, such as antimicrobial peptides, have also been developed due to the emergence of drug resistance. Recently, inhalable nanoparticle-based delivery systems have garnered significant attention for the delivery of anti-infection agents, which possess great advantages like high lung accumulations and precise delivery performances. However, the respiratory physiological structure, mucus and biofilm have been considered as the barriers that nanoparticle drug delivery systems facing, which compromise the therapeutic effects. In this integrative review, recent advances in the inhalable nanoparticle-based delivery system were introduced. In addition, we focused on the biological characteristics of these barriers and discussed effective strategies to overcome the obstacles, including precise deposition in the lower respiratory tract infection site, effective penetration of mucus and breaking of the biofilm barrier. To sum up, this review aimed to deepen the understanding of the fate of anti-infective nanoformulations in pulmonary delivery and find effective strategies to address the barriers, thus providing new insights for the development of pulmonary delivery systems against pulmonary infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信