Zhihao Lin, Ziheng Zhao, Xianrui Lin, Zhenlin Yang, Lin Wang, Rui Xi, Dingpei Long
{"title":"基于蛋白质的纳米颗粒给药系统口服治疗炎症性肠病的进展。","authors":"Zhihao Lin, Ziheng Zhao, Xianrui Lin, Zhenlin Yang, Lin Wang, Rui Xi, Dingpei Long","doi":"10.1080/10717544.2025.2544689","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) comprises chronic autoimmune disorders with significant morbidity, highlighting the need for advanced, noninvasive, targeted therapies. Protein-based nanoparticle drug delivery systems (PNP-DDSs) have emerged as promising platforms to overcome limitations of conventional IBD therapies by improving drug stability and bioavailability while enabling colon-specific delivery. This review systematically classifies PNP-DDSs derived from natural proteins (albumin, gelatin, silk fibroin, and plant-derived proteins) and discusses their design principles along with strategies for intestinal targeting, including particle size and surface charge modulation, stimuli-responsive release (triggered by pH, reactive oxygen species, or enzymes), and active targeting. It highlights recent preclinical advances with oral PNP-DDSs delivering curcumin, resveratrol, 5-aminosalicylic acid, quercetin, and other anti-inflammatory agents, which demonstrate the therapeutic potential of these nanoplatforms in IBD models. Despite promising preclinical outcomes, clinical translation of PNP-DDSs remains challenging due to patient heterogeneity, manufacturing scale-up difficulties, and safety concerns. Future progress will require interdisciplinary innovation and optimization of multi‑stimuli-responsive designs for precise and safe clinical application of PNP-DDSs in IBD management.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2544689"},"PeriodicalIF":8.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in oral treatment of inflammatory bowel disease using protein-based nanoparticle drug delivery systems.\",\"authors\":\"Zhihao Lin, Ziheng Zhao, Xianrui Lin, Zhenlin Yang, Lin Wang, Rui Xi, Dingpei Long\",\"doi\":\"10.1080/10717544.2025.2544689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel disease (IBD) comprises chronic autoimmune disorders with significant morbidity, highlighting the need for advanced, noninvasive, targeted therapies. Protein-based nanoparticle drug delivery systems (PNP-DDSs) have emerged as promising platforms to overcome limitations of conventional IBD therapies by improving drug stability and bioavailability while enabling colon-specific delivery. This review systematically classifies PNP-DDSs derived from natural proteins (albumin, gelatin, silk fibroin, and plant-derived proteins) and discusses their design principles along with strategies for intestinal targeting, including particle size and surface charge modulation, stimuli-responsive release (triggered by pH, reactive oxygen species, or enzymes), and active targeting. It highlights recent preclinical advances with oral PNP-DDSs delivering curcumin, resveratrol, 5-aminosalicylic acid, quercetin, and other anti-inflammatory agents, which demonstrate the therapeutic potential of these nanoplatforms in IBD models. Despite promising preclinical outcomes, clinical translation of PNP-DDSs remains challenging due to patient heterogeneity, manufacturing scale-up difficulties, and safety concerns. Future progress will require interdisciplinary innovation and optimization of multi‑stimuli-responsive designs for precise and safe clinical application of PNP-DDSs in IBD management.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"32 1\",\"pages\":\"2544689\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2025.2544689\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2544689","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Advances in oral treatment of inflammatory bowel disease using protein-based nanoparticle drug delivery systems.
Inflammatory bowel disease (IBD) comprises chronic autoimmune disorders with significant morbidity, highlighting the need for advanced, noninvasive, targeted therapies. Protein-based nanoparticle drug delivery systems (PNP-DDSs) have emerged as promising platforms to overcome limitations of conventional IBD therapies by improving drug stability and bioavailability while enabling colon-specific delivery. This review systematically classifies PNP-DDSs derived from natural proteins (albumin, gelatin, silk fibroin, and plant-derived proteins) and discusses their design principles along with strategies for intestinal targeting, including particle size and surface charge modulation, stimuli-responsive release (triggered by pH, reactive oxygen species, or enzymes), and active targeting. It highlights recent preclinical advances with oral PNP-DDSs delivering curcumin, resveratrol, 5-aminosalicylic acid, quercetin, and other anti-inflammatory agents, which demonstrate the therapeutic potential of these nanoplatforms in IBD models. Despite promising preclinical outcomes, clinical translation of PNP-DDSs remains challenging due to patient heterogeneity, manufacturing scale-up difficulties, and safety concerns. Future progress will require interdisciplinary innovation and optimization of multi‑stimuli-responsive designs for precise and safe clinical application of PNP-DDSs in IBD management.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.