机器学习在心脏健康中的应用综述。

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Ava Perrone, Taghi M Khoshgoftaar
{"title":"机器学习在心脏健康中的应用综述。","authors":"Ava Perrone, Taghi M Khoshgoftaar","doi":"10.1186/s12938-025-01430-4","DOIUrl":null,"url":null,"abstract":"<p><p>The application of machine learning in healthcare continues to gain attention as researchers attempt to prove its potential for the enhancement of diagnosis and prognosis accuracy. Although many applications of machine learning have been well studied, there remain substantial opportunities for advancement. The field of healthcare holds particularly strong potential for improvement from integration with machine learning. In the future, clinicians will likely utilize machine learning to enhance the efficiency of diagnosis and prognosis, optimizing the delivery of care. This study conducts a comprehensive examination of feature selection methodologies, model architectures, and fine-tuning techniques related to diverse diagnostic and prognostic scenarios within the domain of heart health. It addresses some key gaps in earlier research, including the lack of agreement on which data sources are most effective for classifying stroke and heart attack. This review contributes an analysis of current machine learning methods in stroke and heart attack research, highlighting key gaps such as limited use of multimodal data, external validation, and class imbalance mitigation. It suggests improvements, including the adoption of advanced sampling techniques and the use of comprehensive performance metrics. The findings suggest that despite extensive research on machine learning in cardiovascular health, there are gaps to be addressed in methodologies for data collection, preprocessing, model development, evaluation, and feature engineering.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"99"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337504/pdf/","citationCount":"0","resultStr":"{\"title\":\"A review of machine learning applications in heart health.\",\"authors\":\"Ava Perrone, Taghi M Khoshgoftaar\",\"doi\":\"10.1186/s12938-025-01430-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of machine learning in healthcare continues to gain attention as researchers attempt to prove its potential for the enhancement of diagnosis and prognosis accuracy. Although many applications of machine learning have been well studied, there remain substantial opportunities for advancement. The field of healthcare holds particularly strong potential for improvement from integration with machine learning. In the future, clinicians will likely utilize machine learning to enhance the efficiency of diagnosis and prognosis, optimizing the delivery of care. This study conducts a comprehensive examination of feature selection methodologies, model architectures, and fine-tuning techniques related to diverse diagnostic and prognostic scenarios within the domain of heart health. It addresses some key gaps in earlier research, including the lack of agreement on which data sources are most effective for classifying stroke and heart attack. This review contributes an analysis of current machine learning methods in stroke and heart attack research, highlighting key gaps such as limited use of multimodal data, external validation, and class imbalance mitigation. It suggests improvements, including the adoption of advanced sampling techniques and the use of comprehensive performance metrics. The findings suggest that despite extensive research on machine learning in cardiovascular health, there are gaps to be addressed in methodologies for data collection, preprocessing, model development, evaluation, and feature engineering.</p>\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"24 1\",\"pages\":\"99\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337504/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-025-01430-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01430-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着研究人员试图证明机器学习在提高诊断和预后准确性方面的潜力,机器学习在医疗保健领域的应用继续受到关注。尽管机器学习的许多应用已经得到了很好的研究,但仍有很大的发展机会。通过与机器学习的集成,医疗保健领域具有特别强大的改进潜力。在未来,临床医生可能会利用机器学习来提高诊断和预后的效率,优化护理的提供。本研究对与心脏健康领域的各种诊断和预后方案相关的特征选择方法、模型架构和微调技术进行了全面的检查。它解决了早期研究中的一些关键空白,包括对哪些数据来源对中风和心脏病发作的分类最有效缺乏共识。这篇综述分析了目前中风和心脏病研究中的机器学习方法,强调了关键的差距,如多模态数据的有限使用、外部验证和类失衡缓解。它建议改进,包括采用先进的抽样技术和使用综合绩效指标。研究结果表明,尽管对心血管健康中的机器学习进行了广泛的研究,但在数据收集、预处理、模型开发、评估和特征工程的方法方面仍存在空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of machine learning applications in heart health.

The application of machine learning in healthcare continues to gain attention as researchers attempt to prove its potential for the enhancement of diagnosis and prognosis accuracy. Although many applications of machine learning have been well studied, there remain substantial opportunities for advancement. The field of healthcare holds particularly strong potential for improvement from integration with machine learning. In the future, clinicians will likely utilize machine learning to enhance the efficiency of diagnosis and prognosis, optimizing the delivery of care. This study conducts a comprehensive examination of feature selection methodologies, model architectures, and fine-tuning techniques related to diverse diagnostic and prognostic scenarios within the domain of heart health. It addresses some key gaps in earlier research, including the lack of agreement on which data sources are most effective for classifying stroke and heart attack. This review contributes an analysis of current machine learning methods in stroke and heart attack research, highlighting key gaps such as limited use of multimodal data, external validation, and class imbalance mitigation. It suggests improvements, including the adoption of advanced sampling techniques and the use of comprehensive performance metrics. The findings suggest that despite extensive research on machine learning in cardiovascular health, there are gaps to be addressed in methodologies for data collection, preprocessing, model development, evaluation, and feature engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信