{"title":"苝-吩噻嗪二元化合物中局部激发态和电荷转移态的热力学平衡。","authors":"Issei Fukunaga, Shunsuke Kobashi, Yuki Nagai, Hiroki Horita, Hiromitsu Maeda, Yoichi Kobayashi","doi":"10.3762/bjoc.21.121","DOIUrl":null,"url":null,"abstract":"<p><p>We report the excited-state dynamics of π-orthogonal donor-acceptor dyads based on perylene (Pe) and phenothiazine (PTZ), in which triphenylamine (TPA) units and a phenyl spacer were introduced to modulate donor strength and spatial separation. Among the series, Pe-PTZ(TPA)<sub>2</sub> exhibits a distinct thermal equilibrium between the locally excited (LE) state of the PTZ moiety and the photoinduced charge-transfer (CT) state. Femtosecond to microsecond transient absorption spectroscopy reveals that this equilibrium is facilitated not simply by enhanced donor ability, but presumably by excited-state planarization of the PTZ moiety, which lowers the energy of the LE state of the PTZ moiety. In contrast, Pe-Ph-PTZ(TPA)<sub>2</sub>, in which the donor-acceptor distance is increased by a phenyl spacer, does not show clear equilibrium behavior. These results underscore the crucial role of excited-state structural relaxation in tuning photoinduced charge separation, and demonstrate that precise electronic and geometric design can enable controllable excited-state behavior in orthogonal molecular systems.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"1577-1586"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337995/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic equilibrium between locally excited and charge transfer states in perylene-phenothiazine dyads.\",\"authors\":\"Issei Fukunaga, Shunsuke Kobashi, Yuki Nagai, Hiroki Horita, Hiromitsu Maeda, Yoichi Kobayashi\",\"doi\":\"10.3762/bjoc.21.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report the excited-state dynamics of π-orthogonal donor-acceptor dyads based on perylene (Pe) and phenothiazine (PTZ), in which triphenylamine (TPA) units and a phenyl spacer were introduced to modulate donor strength and spatial separation. Among the series, Pe-PTZ(TPA)<sub>2</sub> exhibits a distinct thermal equilibrium between the locally excited (LE) state of the PTZ moiety and the photoinduced charge-transfer (CT) state. Femtosecond to microsecond transient absorption spectroscopy reveals that this equilibrium is facilitated not simply by enhanced donor ability, but presumably by excited-state planarization of the PTZ moiety, which lowers the energy of the LE state of the PTZ moiety. In contrast, Pe-Ph-PTZ(TPA)<sub>2</sub>, in which the donor-acceptor distance is increased by a phenyl spacer, does not show clear equilibrium behavior. These results underscore the crucial role of excited-state structural relaxation in tuning photoinduced charge separation, and demonstrate that precise electronic and geometric design can enable controllable excited-state behavior in orthogonal molecular systems.</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":\"21 \",\"pages\":\"1577-1586\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.21.121\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.121","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Thermodynamic equilibrium between locally excited and charge transfer states in perylene-phenothiazine dyads.
We report the excited-state dynamics of π-orthogonal donor-acceptor dyads based on perylene (Pe) and phenothiazine (PTZ), in which triphenylamine (TPA) units and a phenyl spacer were introduced to modulate donor strength and spatial separation. Among the series, Pe-PTZ(TPA)2 exhibits a distinct thermal equilibrium between the locally excited (LE) state of the PTZ moiety and the photoinduced charge-transfer (CT) state. Femtosecond to microsecond transient absorption spectroscopy reveals that this equilibrium is facilitated not simply by enhanced donor ability, but presumably by excited-state planarization of the PTZ moiety, which lowers the energy of the LE state of the PTZ moiety. In contrast, Pe-Ph-PTZ(TPA)2, in which the donor-acceptor distance is increased by a phenyl spacer, does not show clear equilibrium behavior. These results underscore the crucial role of excited-state structural relaxation in tuning photoinduced charge separation, and demonstrate that precise electronic and geometric design can enable controllable excited-state behavior in orthogonal molecular systems.
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.