生物聚合物构建模块的益生元形成实验模型。

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
César Menor-Salván, Marta Ruiz-Bermejo
{"title":"生物聚合物构建模块的益生元形成实验模型。","authors":"César Menor-Salván, Marta Ruiz-Bermejo","doi":"10.1177/15311074251365950","DOIUrl":null,"url":null,"abstract":"<p><p>The scientific study of the origins of life is a deep pursuit that exists at the intersection of multiple disciplines. Prebiotic chemistry focuses on understanding how biopolymer building blocks such as amino acids, nucleotides, and sugars emerged and how their chemical and structural space evolves toward life (chemical evolution). Simulation experiments have been essential for exploring plausible pathways for the origin of building blocks under early Earth conditions and planetary environments. Key examples include the seminal Miller-Urey experiment and the polymerization of hydrogen cyanide. Research highlights the role of environmental cycles and geochemistry in shaping the prebiotic chemical space. These processes facilitated the condensation and stabilization of biopolymer precursors, particularly in terrestrial or small-pond scenarios. Noncanonical building blocks, including triazines and alternative amino acids, may have contributed to proto-biopolymer formation. This expands our understanding of chemical evolution. Despite significant progress, challenges remain, particularly in understanding nucleoside formation and the transition to modern biopolymers. This review provides a general overview of the prebiotic formation of biopolymer building blocks and examines both classic and seminal experiments and recent experimental approaches. Insights provided by extraterrestrial samples, such as carbonaceous meteorites and asteroids, also contribute to offering a comprehensive perspective on abiogenesis.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Models on the Prebiotic Formation of Biopolymer Building Blocks.\",\"authors\":\"César Menor-Salván, Marta Ruiz-Bermejo\",\"doi\":\"10.1177/15311074251365950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The scientific study of the origins of life is a deep pursuit that exists at the intersection of multiple disciplines. Prebiotic chemistry focuses on understanding how biopolymer building blocks such as amino acids, nucleotides, and sugars emerged and how their chemical and structural space evolves toward life (chemical evolution). Simulation experiments have been essential for exploring plausible pathways for the origin of building blocks under early Earth conditions and planetary environments. Key examples include the seminal Miller-Urey experiment and the polymerization of hydrogen cyanide. Research highlights the role of environmental cycles and geochemistry in shaping the prebiotic chemical space. These processes facilitated the condensation and stabilization of biopolymer precursors, particularly in terrestrial or small-pond scenarios. Noncanonical building blocks, including triazines and alternative amino acids, may have contributed to proto-biopolymer formation. This expands our understanding of chemical evolution. Despite significant progress, challenges remain, particularly in understanding nucleoside formation and the transition to modern biopolymers. This review provides a general overview of the prebiotic formation of biopolymer building blocks and examines both classic and seminal experiments and recent experimental approaches. Insights provided by extraterrestrial samples, such as carbonaceous meteorites and asteroids, also contribute to offering a comprehensive perspective on abiogenesis.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1177/15311074251365950\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1177/15311074251365950","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对生命起源的科学研究是一项存在于多学科交叉领域的深刻追求。益生元化学的重点是了解生物聚合物的构建模块,如氨基酸、核苷酸和糖是如何出现的,以及它们的化学和结构空间是如何向生命进化的(化学进化)。模拟实验对于探索早期地球条件和行星环境下构造块起源的合理途径至关重要。关键的例子包括开创性的米勒-尤里实验和氰化氢的聚合。研究强调了环境循环和地球化学在塑造益生元化学空间中的作用。这些过程促进了生物聚合物前体的凝结和稳定,特别是在陆地或小池塘的情况下。非规范构建块,包括三嗪和替代氨基酸,可能有助于原始生物聚合物的形成。这扩大了我们对化学进化的理解。尽管取得了重大进展,但挑战依然存在,特别是在理解核苷形成和向现代生物聚合物过渡方面。这篇综述提供了生物聚合物构建块的益生元形成的一般概述,并检查了经典和开创性的实验和最近的实验方法。碳质陨石和小行星等地外样本提供的见解,也有助于提供对自然发生的全面看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Models on the Prebiotic Formation of Biopolymer Building Blocks.

The scientific study of the origins of life is a deep pursuit that exists at the intersection of multiple disciplines. Prebiotic chemistry focuses on understanding how biopolymer building blocks such as amino acids, nucleotides, and sugars emerged and how their chemical and structural space evolves toward life (chemical evolution). Simulation experiments have been essential for exploring plausible pathways for the origin of building blocks under early Earth conditions and planetary environments. Key examples include the seminal Miller-Urey experiment and the polymerization of hydrogen cyanide. Research highlights the role of environmental cycles and geochemistry in shaping the prebiotic chemical space. These processes facilitated the condensation and stabilization of biopolymer precursors, particularly in terrestrial or small-pond scenarios. Noncanonical building blocks, including triazines and alternative amino acids, may have contributed to proto-biopolymer formation. This expands our understanding of chemical evolution. Despite significant progress, challenges remain, particularly in understanding nucleoside formation and the transition to modern biopolymers. This review provides a general overview of the prebiotic formation of biopolymer building blocks and examines both classic and seminal experiments and recent experimental approaches. Insights provided by extraterrestrial samples, such as carbonaceous meteorites and asteroids, also contribute to offering a comprehensive perspective on abiogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信