{"title":"芦丁灌注胶原-羟基磷灰石支架促进骨软骨再生的综合网络药理学及实验验证。","authors":"Ashwathi Vijayalekha, Hariram Sridhar, Saranya Srinivasan, Vandhana Anumaiya, Suresh Kumar Anandasadagopan, Ashok Kumar Pandurangan","doi":"10.1007/s13205-025-04461-9","DOIUrl":null,"url":null,"abstract":"<p><p>Osteochondral defects (OCD), characterized by bone fractures and cartilage degradation, remain a significant health concern worldwide. This study reports on the development and evaluation of a bioactive scaffold composed of rutin, collagen, and hydroxyapatite (RUT-COL-HAP) for osteochondral tissue regeneration. Network pharmacology identified 51 common target genes of rutin related to chondrocyte and macrophage functions, with ten hub genes playing key roles in inflammation, ECM remodeling, and cell differentiation. Molecular docking revealed strong binding affinities between rutin and its targets. The structural and chemical properties of the scaffolds were assessed using SEM (scanning electron microscopy), FTIR (Fourier transform infrared spectroscopy), TGA (thermogravimetric analysis), and XRD (X-ray diffraction). The results confirmed the successful integration of all the components and demonstrated enhanced crystallinity, thermal stability, and a highly porous, interconnected architecture, particularly in the RUT5-COL-HAP variant. Porosity analysis showed an increase of 50% with higher rutin incorporation, while swelling and biodegradation assessments revealed that RUT5-COL-HAP maintained structural integrity and exhibited controlled degradation over 14 days. In vitro biocompatibility using MG-63 cells demonstrated over 120% cell viability at 72 h, and zebrafish embryo toxicity assays confirmed rutin's safety across all tested concentrations. Overall, the RUT5-COL-HAP scaffold demonstrated high porosity, favorable swelling behavior, and appropriate biodegradation rates. Structural analyses confirmed the ability of rutin to mimic the native extracellular matrix, and toxicity studies verified the safety of rutin for biomedical applications. Thus, it offers a promising biomaterial for osteochondral tissue engineering, providing an effective strategy for treating OCD and improving the clinical outcomes.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 9","pages":"290"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrative network pharmacology and experimental validation of rutin-infused collagen-hydroxyapatite scaffold for promoting osteochondral regeneration.\",\"authors\":\"Ashwathi Vijayalekha, Hariram Sridhar, Saranya Srinivasan, Vandhana Anumaiya, Suresh Kumar Anandasadagopan, Ashok Kumar Pandurangan\",\"doi\":\"10.1007/s13205-025-04461-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteochondral defects (OCD), characterized by bone fractures and cartilage degradation, remain a significant health concern worldwide. This study reports on the development and evaluation of a bioactive scaffold composed of rutin, collagen, and hydroxyapatite (RUT-COL-HAP) for osteochondral tissue regeneration. Network pharmacology identified 51 common target genes of rutin related to chondrocyte and macrophage functions, with ten hub genes playing key roles in inflammation, ECM remodeling, and cell differentiation. Molecular docking revealed strong binding affinities between rutin and its targets. The structural and chemical properties of the scaffolds were assessed using SEM (scanning electron microscopy), FTIR (Fourier transform infrared spectroscopy), TGA (thermogravimetric analysis), and XRD (X-ray diffraction). The results confirmed the successful integration of all the components and demonstrated enhanced crystallinity, thermal stability, and a highly porous, interconnected architecture, particularly in the RUT5-COL-HAP variant. Porosity analysis showed an increase of 50% with higher rutin incorporation, while swelling and biodegradation assessments revealed that RUT5-COL-HAP maintained structural integrity and exhibited controlled degradation over 14 days. In vitro biocompatibility using MG-63 cells demonstrated over 120% cell viability at 72 h, and zebrafish embryo toxicity assays confirmed rutin's safety across all tested concentrations. Overall, the RUT5-COL-HAP scaffold demonstrated high porosity, favorable swelling behavior, and appropriate biodegradation rates. Structural analyses confirmed the ability of rutin to mimic the native extracellular matrix, and toxicity studies verified the safety of rutin for biomedical applications. Thus, it offers a promising biomaterial for osteochondral tissue engineering, providing an effective strategy for treating OCD and improving the clinical outcomes.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 9\",\"pages\":\"290\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-025-04461-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04461-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Integrative network pharmacology and experimental validation of rutin-infused collagen-hydroxyapatite scaffold for promoting osteochondral regeneration.
Osteochondral defects (OCD), characterized by bone fractures and cartilage degradation, remain a significant health concern worldwide. This study reports on the development and evaluation of a bioactive scaffold composed of rutin, collagen, and hydroxyapatite (RUT-COL-HAP) for osteochondral tissue regeneration. Network pharmacology identified 51 common target genes of rutin related to chondrocyte and macrophage functions, with ten hub genes playing key roles in inflammation, ECM remodeling, and cell differentiation. Molecular docking revealed strong binding affinities between rutin and its targets. The structural and chemical properties of the scaffolds were assessed using SEM (scanning electron microscopy), FTIR (Fourier transform infrared spectroscopy), TGA (thermogravimetric analysis), and XRD (X-ray diffraction). The results confirmed the successful integration of all the components and demonstrated enhanced crystallinity, thermal stability, and a highly porous, interconnected architecture, particularly in the RUT5-COL-HAP variant. Porosity analysis showed an increase of 50% with higher rutin incorporation, while swelling and biodegradation assessments revealed that RUT5-COL-HAP maintained structural integrity and exhibited controlled degradation over 14 days. In vitro biocompatibility using MG-63 cells demonstrated over 120% cell viability at 72 h, and zebrafish embryo toxicity assays confirmed rutin's safety across all tested concentrations. Overall, the RUT5-COL-HAP scaffold demonstrated high porosity, favorable swelling behavior, and appropriate biodegradation rates. Structural analyses confirmed the ability of rutin to mimic the native extracellular matrix, and toxicity studies verified the safety of rutin for biomedical applications. Thus, it offers a promising biomaterial for osteochondral tissue engineering, providing an effective strategy for treating OCD and improving the clinical outcomes.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.