somammodules:一种针对SomaScan数据的途径富集方法。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Julián Candia*, Giovanna Fantoni, Francheska Delgado-Peraza, Nader Shehadeh, Toshiko Tanaka, Ruin Moaddel, Keenan A. Walker and Luigi Ferrucci, 
{"title":"somammodules:一种针对SomaScan数据的途径富集方法。","authors":"Julián Candia*,&nbsp;Giovanna Fantoni,&nbsp;Francheska Delgado-Peraza,&nbsp;Nader Shehadeh,&nbsp;Toshiko Tanaka,&nbsp;Ruin Moaddel,&nbsp;Keenan A. Walker and Luigi Ferrucci,&nbsp;","doi":"10.1021/acs.jproteome.4c01114","DOIUrl":null,"url":null,"abstract":"<p >Motivated by the lack of adequate tools to perform pathway enrichment analysis, this work presents an approach specifically tailored to SomaScan data. Starting from annotated gene sets, we developed a greedy, top-down procedure to iteratively identify strongly intracorrelated SOMAmer modules, termed “SomaModules”, based on 11K SomaScan data. We generated two repositories based on the latest MSigDB and MitoCarta releases, containing more than 40,000 SOMAmer-based gene sets combined. These repositories can be utilized by any unstructured pathway enrichment analysis tool. We validated our results with two case examples: (i) Alzheimer’s disease specific pathways in a 7K SomaScan case–control study, and (ii) mitochondrial pathways using 11K SomaScan data linked to physical performance outcomes. Using gene set enrichment analysis (GSEA), we found that, in both examples, SomaModules had significantly higher enrichment than the original gene set counterparts. These findings were robust and not significantly affected by the choice of enrichment metric or the Kolmogorov enrichment statistic used in the GSEA procedure. We provide users with access to all code, documentation and data needed to reproduce our current repositories, which also will enable them to leverage our framework to analyze SomaModules derived from other sources, including custom, user-generated gene sets.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 9","pages":"4391–4402"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.4c01114","citationCount":"0","resultStr":"{\"title\":\"SomaModules: A Pathway Enrichment Approach Tailored to SomaScan Data\",\"authors\":\"Julián Candia*,&nbsp;Giovanna Fantoni,&nbsp;Francheska Delgado-Peraza,&nbsp;Nader Shehadeh,&nbsp;Toshiko Tanaka,&nbsp;Ruin Moaddel,&nbsp;Keenan A. Walker and Luigi Ferrucci,&nbsp;\",\"doi\":\"10.1021/acs.jproteome.4c01114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Motivated by the lack of adequate tools to perform pathway enrichment analysis, this work presents an approach specifically tailored to SomaScan data. Starting from annotated gene sets, we developed a greedy, top-down procedure to iteratively identify strongly intracorrelated SOMAmer modules, termed “SomaModules”, based on 11K SomaScan data. We generated two repositories based on the latest MSigDB and MitoCarta releases, containing more than 40,000 SOMAmer-based gene sets combined. These repositories can be utilized by any unstructured pathway enrichment analysis tool. We validated our results with two case examples: (i) Alzheimer’s disease specific pathways in a 7K SomaScan case–control study, and (ii) mitochondrial pathways using 11K SomaScan data linked to physical performance outcomes. Using gene set enrichment analysis (GSEA), we found that, in both examples, SomaModules had significantly higher enrichment than the original gene set counterparts. These findings were robust and not significantly affected by the choice of enrichment metric or the Kolmogorov enrichment statistic used in the GSEA procedure. We provide users with access to all code, documentation and data needed to reproduce our current repositories, which also will enable them to leverage our framework to analyze SomaModules derived from other sources, including custom, user-generated gene sets.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\"24 9\",\"pages\":\"4391–4402\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.4c01114\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c01114\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c01114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏足够的工具来进行途径富集分析,这项工作提出了一种专门针对SomaScan数据的方法。从注释的基因集开始,我们开发了一个贪婪的,自上而下的程序来迭代地识别强内相关的SOMAmer模块,称为“somammodules”,基于11K SomaScan数据。我们基于最新的MSigDB和MitoCarta版本生成了两个存储库,其中包含超过40,000个基于sommer的基因集。这些库可以被任何非结构化途径富集分析工具所利用。我们通过两个案例验证了我们的结果:(i) 7K SomaScan病例对照研究中的阿尔茨海默病特异性途径,以及(ii)使用与身体表现结果相关的11K SomaScan数据的线粒体途径。通过基因集富集分析(GSEA),我们发现,在这两个例子中,somammodules的富集程度明显高于原始基因集对应的富集程度。这些发现是稳健的,并且不受GSEA程序中使用的富集度量或Kolmogorov富集统计量的选择的显著影响。我们为用户提供了对所有代码、文档和数据的访问权限,这些代码、文档和数据需要重现我们当前的存储库,这也将使他们能够利用我们的框架来分析来自其他来源的somammodules,包括自定义的、用户生成的基因集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SomaModules: A Pathway Enrichment Approach Tailored to SomaScan Data

Motivated by the lack of adequate tools to perform pathway enrichment analysis, this work presents an approach specifically tailored to SomaScan data. Starting from annotated gene sets, we developed a greedy, top-down procedure to iteratively identify strongly intracorrelated SOMAmer modules, termed “SomaModules”, based on 11K SomaScan data. We generated two repositories based on the latest MSigDB and MitoCarta releases, containing more than 40,000 SOMAmer-based gene sets combined. These repositories can be utilized by any unstructured pathway enrichment analysis tool. We validated our results with two case examples: (i) Alzheimer’s disease specific pathways in a 7K SomaScan case–control study, and (ii) mitochondrial pathways using 11K SomaScan data linked to physical performance outcomes. Using gene set enrichment analysis (GSEA), we found that, in both examples, SomaModules had significantly higher enrichment than the original gene set counterparts. These findings were robust and not significantly affected by the choice of enrichment metric or the Kolmogorov enrichment statistic used in the GSEA procedure. We provide users with access to all code, documentation and data needed to reproduce our current repositories, which also will enable them to leverage our framework to analyze SomaModules derived from other sources, including custom, user-generated gene sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信