{"title":"支链α酮酸脱氢酶激酶介导的AKT磷酸化促进RCC肿瘤发生和耐药。","authors":"Qin Tian, Jinxiang Wang, Qiji Li, Yangruiyu Liu, Yanping Chen, Jiacheng Feng, Zi-Ning Lei, Harsh Patel, Chao-Yun Cai, Yuzhi Xu, Chuntao Quan, Lingyan Fei, Zexiu Xiao, Shuo Fang, Tianxin Lin, Zhe-Sheng Chen, Yuchen Liu, Leli Zeng, Yihang Pan","doi":"10.1002/advs.202411081","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced renal cell carcinoma (RCC) primarily relies on targeted and immune-based therapies, yet these treatments often face limitations due to inefficacy and drug resistance. Branched-chain α-keto-acid dehydrogenase kinase (BCKDK) has been implicated in promoting RCC metastasis, but its specific substrates and the mechanisms underlying its regulation of RCC progression remain poorly understood. This study uncovers a novel mechanism whereby BCKDK-mediated AKT phosphorylation drives RCC tumorigenesis and drug resistance. Elevated BCKDK expression correlates with poor prognosis in RCC clinical samples. BCKDK deficiency inhibits RCC cell proliferation and tumorigenesis both in vitro and in vivo. Mechanistic investigations reveal that BCKDK directly binds to and regulates the phosphorylation of AKT. BCKDK-mediated phosphorylation of AKT decreases ubiquitin-mediated AKT protein degradation, and promotes tumorigenesis via activation of the AKT/mTOR signaling pathway. RNA sequencing identifies BCKDK's involvement in the drug metabolism network and apoptotic signaling pathways. The BCKDK/AKT/ABCB1 axis mediates doxorubicin resistance. Targeting BCKDK/AKT inhibits the growth of RCC patient-derived organoids (PDOs), enhances doxorubicin-induced apoptosis in RCC cells, and suppresses tumor growth in vivo. These findings identify a previously unrecognized phosphorylation substrate of BCKDK and highlight the critical role of the BCKDK/AKT signaling axis in RCC progression, offering a promising target for therapeutic intervention.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e11081"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branched-Chain α Keto-Acid Dehydrogenase Kinase-Mediated AKT Phosphorylation Promotes RCC Tumorigenesis and Drug Resistance.\",\"authors\":\"Qin Tian, Jinxiang Wang, Qiji Li, Yangruiyu Liu, Yanping Chen, Jiacheng Feng, Zi-Ning Lei, Harsh Patel, Chao-Yun Cai, Yuzhi Xu, Chuntao Quan, Lingyan Fei, Zexiu Xiao, Shuo Fang, Tianxin Lin, Zhe-Sheng Chen, Yuchen Liu, Leli Zeng, Yihang Pan\",\"doi\":\"10.1002/advs.202411081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced renal cell carcinoma (RCC) primarily relies on targeted and immune-based therapies, yet these treatments often face limitations due to inefficacy and drug resistance. Branched-chain α-keto-acid dehydrogenase kinase (BCKDK) has been implicated in promoting RCC metastasis, but its specific substrates and the mechanisms underlying its regulation of RCC progression remain poorly understood. This study uncovers a novel mechanism whereby BCKDK-mediated AKT phosphorylation drives RCC tumorigenesis and drug resistance. Elevated BCKDK expression correlates with poor prognosis in RCC clinical samples. BCKDK deficiency inhibits RCC cell proliferation and tumorigenesis both in vitro and in vivo. Mechanistic investigations reveal that BCKDK directly binds to and regulates the phosphorylation of AKT. BCKDK-mediated phosphorylation of AKT decreases ubiquitin-mediated AKT protein degradation, and promotes tumorigenesis via activation of the AKT/mTOR signaling pathway. RNA sequencing identifies BCKDK's involvement in the drug metabolism network and apoptotic signaling pathways. The BCKDK/AKT/ABCB1 axis mediates doxorubicin resistance. Targeting BCKDK/AKT inhibits the growth of RCC patient-derived organoids (PDOs), enhances doxorubicin-induced apoptosis in RCC cells, and suppresses tumor growth in vivo. These findings identify a previously unrecognized phosphorylation substrate of BCKDK and highlight the critical role of the BCKDK/AKT signaling axis in RCC progression, offering a promising target for therapeutic intervention.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e11081\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202411081\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411081","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Branched-Chain α Keto-Acid Dehydrogenase Kinase-Mediated AKT Phosphorylation Promotes RCC Tumorigenesis and Drug Resistance.
Advanced renal cell carcinoma (RCC) primarily relies on targeted and immune-based therapies, yet these treatments often face limitations due to inefficacy and drug resistance. Branched-chain α-keto-acid dehydrogenase kinase (BCKDK) has been implicated in promoting RCC metastasis, but its specific substrates and the mechanisms underlying its regulation of RCC progression remain poorly understood. This study uncovers a novel mechanism whereby BCKDK-mediated AKT phosphorylation drives RCC tumorigenesis and drug resistance. Elevated BCKDK expression correlates with poor prognosis in RCC clinical samples. BCKDK deficiency inhibits RCC cell proliferation and tumorigenesis both in vitro and in vivo. Mechanistic investigations reveal that BCKDK directly binds to and regulates the phosphorylation of AKT. BCKDK-mediated phosphorylation of AKT decreases ubiquitin-mediated AKT protein degradation, and promotes tumorigenesis via activation of the AKT/mTOR signaling pathway. RNA sequencing identifies BCKDK's involvement in the drug metabolism network and apoptotic signaling pathways. The BCKDK/AKT/ABCB1 axis mediates doxorubicin resistance. Targeting BCKDK/AKT inhibits the growth of RCC patient-derived organoids (PDOs), enhances doxorubicin-induced apoptosis in RCC cells, and suppresses tumor growth in vivo. These findings identify a previously unrecognized phosphorylation substrate of BCKDK and highlight the critical role of the BCKDK/AKT signaling axis in RCC progression, offering a promising target for therapeutic intervention.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.