PKS加载模块的机理剖析:ACP结构域工程促进gilvosporeus链霉菌纳他霉素的生物合成

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Wenli Yu, Gongli Zong, Wenchi Zhang and Rongzhen Zhang*, 
{"title":"PKS加载模块的机理剖析:ACP结构域工程促进gilvosporeus链霉菌纳他霉素的生物合成","authors":"Wenli Yu,&nbsp;Gongli Zong,&nbsp;Wenchi Zhang and Rongzhen Zhang*,&nbsp;","doi":"10.1021/acscatal.5c04349","DOIUrl":null,"url":null,"abstract":"<p ><i>Streptomyces gilvosporeus</i> F607 governs natamycin biosynthesis via a modular polyketide synthase (PKS) system, which includes an atypical loading module (SgnS0) featuring unique functional domains: a carboxylic acid-CoA ligase (CoL), an acyl carrier protein (ACPL1), a ketosynthase (KS) domain, an acyltransferase (AT) domain, and an ACPL2 configuration (CoL-ACPL1-KS<sup>S</sup>-AT-ACPL2). Here, we resolve the catalytic logic of this initiation module and leverage its architectural features for the efficient synthesis of natamycin. An <i>sgnS0</i> knockout strain <i>S. gilvosporeus</i> F607/Δ<i>sgnS0</i> produces undetectable natamycin, suggesting that <i>sgnS0</i> is indispensable for natamycin biosynthesis. We employed a combination of site-directed mutagenesis targeting the KS<sup>S</sup> and AT domains of SgnS0, demonstrating that the AT domain specifically loads a malonyl group onto the ACP domain, followed by KS<sup>S</sup>-mediated decarboxylation to generate acetyl-ACP intermediates. The SgnS0 enzyme presented a transacylation catalytic efficiency (<i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub> = 0.59 ± 0.02 μM<sup>–1</sup>·min<sup>–1</sup>), while the CoL-deletion mutant SgnS0-AKAA showed a 30.5% reduction in transacylation catalytic efficiency (0.41 ± 0.01 μM<sup>–1</sup>·min<sup>–1</sup>). This indicates that, nonessential for core catalysis, the CoL domain acts as a structural modulator optimizing catalytic efficiency. Additionally, in vivo mutagenesis and in vitro enzymatic analysis identified both ACPL1 and ACPL2 as essential for biosynthetic function with dual inactivation abolishing natamycin production. Guided by these findings, we engineered the SgnS0 module incorporating tandem ACP architectures in vitro and in <i>S. gilvosporeus</i> F607. Systematic insertion of one or two ACPL2 copies downstream of the native ACPL2 domain of SgnS0 in vitro revealed that a three-ACP construct significantly enhanced the transacylation catalytic efficiency, achieving a 2.64-fold increase in <i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub>. Furthermore, dual ACPL2 insertions occurring in <i>S. gilvosporeus</i> F607 yielded a natamycin titer of 9.5 g L<sup>–1</sup>─representing a 160% improvement over the wild-type strain <i>S. gilvosporeus</i> F607. These findings provide a mechanistic basis for the ACP domain function in modular PKSs and highlight tandem ACP engineering as a powerful strategy to boost secondary metabolite production.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 16","pages":"14493–14504"},"PeriodicalIF":13.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Dissection of the Loading Module of PKS: ACP Domain Engineering Enhances Natamycin Biosynthesis in Streptomyces gilvosporeus\",\"authors\":\"Wenli Yu,&nbsp;Gongli Zong,&nbsp;Wenchi Zhang and Rongzhen Zhang*,&nbsp;\",\"doi\":\"10.1021/acscatal.5c04349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p ><i>Streptomyces gilvosporeus</i> F607 governs natamycin biosynthesis via a modular polyketide synthase (PKS) system, which includes an atypical loading module (SgnS0) featuring unique functional domains: a carboxylic acid-CoA ligase (CoL), an acyl carrier protein (ACPL1), a ketosynthase (KS) domain, an acyltransferase (AT) domain, and an ACPL2 configuration (CoL-ACPL1-KS<sup>S</sup>-AT-ACPL2). Here, we resolve the catalytic logic of this initiation module and leverage its architectural features for the efficient synthesis of natamycin. An <i>sgnS0</i> knockout strain <i>S. gilvosporeus</i> F607/Δ<i>sgnS0</i> produces undetectable natamycin, suggesting that <i>sgnS0</i> is indispensable for natamycin biosynthesis. We employed a combination of site-directed mutagenesis targeting the KS<sup>S</sup> and AT domains of SgnS0, demonstrating that the AT domain specifically loads a malonyl group onto the ACP domain, followed by KS<sup>S</sup>-mediated decarboxylation to generate acetyl-ACP intermediates. The SgnS0 enzyme presented a transacylation catalytic efficiency (<i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub> = 0.59 ± 0.02 μM<sup>–1</sup>·min<sup>–1</sup>), while the CoL-deletion mutant SgnS0-AKAA showed a 30.5% reduction in transacylation catalytic efficiency (0.41 ± 0.01 μM<sup>–1</sup>·min<sup>–1</sup>). This indicates that, nonessential for core catalysis, the CoL domain acts as a structural modulator optimizing catalytic efficiency. Additionally, in vivo mutagenesis and in vitro enzymatic analysis identified both ACPL1 and ACPL2 as essential for biosynthetic function with dual inactivation abolishing natamycin production. Guided by these findings, we engineered the SgnS0 module incorporating tandem ACP architectures in vitro and in <i>S. gilvosporeus</i> F607. Systematic insertion of one or two ACPL2 copies downstream of the native ACPL2 domain of SgnS0 in vitro revealed that a three-ACP construct significantly enhanced the transacylation catalytic efficiency, achieving a 2.64-fold increase in <i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub>. Furthermore, dual ACPL2 insertions occurring in <i>S. gilvosporeus</i> F607 yielded a natamycin titer of 9.5 g L<sup>–1</sup>─representing a 160% improvement over the wild-type strain <i>S. gilvosporeus</i> F607. These findings provide a mechanistic basis for the ACP domain function in modular PKSs and highlight tandem ACP engineering as a powerful strategy to boost secondary metabolite production.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 16\",\"pages\":\"14493–14504\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c04349\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c04349","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

gilvosporeus链霉菌F607通过模块化聚酮合成酶(PKS)系统控制纳他霉素的生物合成,该系统包括一个非典型加载模块(SgnS0),具有独特的功能域:羧酸-辅酶a连接酶(CoL)、酰基载体蛋白(ACPL1)、酮合成酶(KS)结构域、酰基转移酶(AT)结构域和ACPL2结构域(CoL-ACPL1- kss -AT-ACPL2)。在这里,我们解决了该引发模块的催化逻辑,并利用其结构特征高效合成纳他霉素。sgnS0敲除菌株S. gilvosporeus F607/ΔsgnS0产生的纳他霉素检测不到,表明sgnS0是纳他霉素生物合成不可或缺的。我们采用了针对SgnS0的KSS和AT结构域的定点诱变组合,证明AT结构域特异性地将丙二醇基负载到ACP结构域,然后由KSS介导的脱羧生成乙酰ACP中间体。SgnS0酶的转酰化催化效率为0.59±0.02 μM-1·min-1,而cold缺失突变体SgnS0- akaa酶的转酰化催化效率为0.41±0.01 μM-1·min-1,降低了30.5%。这表明,CoL结构域作为优化催化效率的结构调节剂,对核心催化不是必需的。此外,体内诱变和体外酶促分析发现,ACPL1和ACPL2对生物合成功能至关重要,双重失活可消除纳他霉素的产生。在这些发现的指导下,我们设计了结合体外和S. gilvosporeus F607串联ACP结构的SgnS0模块。在体外实验中,系统地在SgnS0的原生ACPL2结构域下游插入一个或两个ACPL2拷贝表明,一个3 - acp结构显著提高了转酰基化的催化效率,使kcat/Km增加了2.64倍。此外,在S. gilvosporeus F607中发生的双ACPL2插入产生了9.5 g L-1的纳他霉素滴度,比野生型菌株S. gilvosporeus F607提高了160%。这些发现为模块化PKSs中ACP结构域的功能提供了机制基础,并强调了串联ACP工程是促进次生代谢物产生的有力策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanistic Dissection of the Loading Module of PKS: ACP Domain Engineering Enhances Natamycin Biosynthesis in Streptomyces gilvosporeus

Mechanistic Dissection of the Loading Module of PKS: ACP Domain Engineering Enhances Natamycin Biosynthesis in Streptomyces gilvosporeus

Mechanistic Dissection of the Loading Module of PKS: ACP Domain Engineering Enhances Natamycin Biosynthesis in Streptomyces gilvosporeus

Streptomyces gilvosporeus F607 governs natamycin biosynthesis via a modular polyketide synthase (PKS) system, which includes an atypical loading module (SgnS0) featuring unique functional domains: a carboxylic acid-CoA ligase (CoL), an acyl carrier protein (ACPL1), a ketosynthase (KS) domain, an acyltransferase (AT) domain, and an ACPL2 configuration (CoL-ACPL1-KSS-AT-ACPL2). Here, we resolve the catalytic logic of this initiation module and leverage its architectural features for the efficient synthesis of natamycin. An sgnS0 knockout strain S. gilvosporeus F607/ΔsgnS0 produces undetectable natamycin, suggesting that sgnS0 is indispensable for natamycin biosynthesis. We employed a combination of site-directed mutagenesis targeting the KSS and AT domains of SgnS0, demonstrating that the AT domain specifically loads a malonyl group onto the ACP domain, followed by KSS-mediated decarboxylation to generate acetyl-ACP intermediates. The SgnS0 enzyme presented a transacylation catalytic efficiency (kcat/Km = 0.59 ± 0.02 μM–1·min–1), while the CoL-deletion mutant SgnS0-AKAA showed a 30.5% reduction in transacylation catalytic efficiency (0.41 ± 0.01 μM–1·min–1). This indicates that, nonessential for core catalysis, the CoL domain acts as a structural modulator optimizing catalytic efficiency. Additionally, in vivo mutagenesis and in vitro enzymatic analysis identified both ACPL1 and ACPL2 as essential for biosynthetic function with dual inactivation abolishing natamycin production. Guided by these findings, we engineered the SgnS0 module incorporating tandem ACP architectures in vitro and in S. gilvosporeus F607. Systematic insertion of one or two ACPL2 copies downstream of the native ACPL2 domain of SgnS0 in vitro revealed that a three-ACP construct significantly enhanced the transacylation catalytic efficiency, achieving a 2.64-fold increase in kcat/Km. Furthermore, dual ACPL2 insertions occurring in S. gilvosporeus F607 yielded a natamycin titer of 9.5 g L–1─representing a 160% improvement over the wild-type strain S. gilvosporeus F607. These findings provide a mechanistic basis for the ACP domain function in modular PKSs and highlight tandem ACP engineering as a powerful strategy to boost secondary metabolite production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信