通过反应器配置和工艺参数调制优化制备富镍单晶正极材料用超小粒径Ni0.94Co0.04Mn0.02(OH)2前驱体

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Jiuhua Chen, Junhai Deng, Bi Luo, Yefeng Zhou
{"title":"通过反应器配置和工艺参数调制优化制备富镍单晶正极材料用超小粒径Ni0.94Co0.04Mn0.02(OH)2前驱体","authors":"Jiuhua Chen,&nbsp;Junhai Deng,&nbsp;Bi Luo,&nbsp;Yefeng Zhou","doi":"10.1016/j.ces.2025.122410","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel-rich single-crystal cathode materials have become a research hotspot in power battery. However, preparing highly dispersed Nickel-rich small-sized precursors with excellent sphericity using stirred tank reactors remains a major challenge. Therefore, it is essential to clarify the influence mechanisms of reactor structural parameters and co-precipitation operating condition on the crystalline characteristics of ultra-small particle size precursors. In this study, computational fluid dynamics simulations were employed to elucidate the impact of impeller type, impeller elevation, and baffle quantity on mixing efficiency within the reactor. This systematic analysis identifies the optimal combination of internal components that ensures uniform flow field distribution. Under optimal reactor structural parameters, optimized co-precipitation process parameters enabled the successful preparation of ultra-small particle size precursor with excellent sphericity and crystallinity. The derived single-crystal cathode material demonstrated good electrochemical performance. This research provides theoretical foundation and process optimization guidance for the industrial production of ultra-small particle size nickel-rich single-crystal precursors.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"320 ","pages":"Article 122410"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized synthesis of ultra-small particle size Ni0.94Co0.04Mn0.02(OH)2 precursors for nickel-rich single-crystal cathode materials via reactor configuration and process parameter modulation\",\"authors\":\"Jiuhua Chen,&nbsp;Junhai Deng,&nbsp;Bi Luo,&nbsp;Yefeng Zhou\",\"doi\":\"10.1016/j.ces.2025.122410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nickel-rich single-crystal cathode materials have become a research hotspot in power battery. However, preparing highly dispersed Nickel-rich small-sized precursors with excellent sphericity using stirred tank reactors remains a major challenge. Therefore, it is essential to clarify the influence mechanisms of reactor structural parameters and co-precipitation operating condition on the crystalline characteristics of ultra-small particle size precursors. In this study, computational fluid dynamics simulations were employed to elucidate the impact of impeller type, impeller elevation, and baffle quantity on mixing efficiency within the reactor. This systematic analysis identifies the optimal combination of internal components that ensures uniform flow field distribution. Under optimal reactor structural parameters, optimized co-precipitation process parameters enabled the successful preparation of ultra-small particle size precursor with excellent sphericity and crystallinity. The derived single-crystal cathode material demonstrated good electrochemical performance. This research provides theoretical foundation and process optimization guidance for the industrial production of ultra-small particle size nickel-rich single-crystal precursors.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"320 \",\"pages\":\"Article 122410\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000925092501231X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000925092501231X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

富镍单晶正极材料已成为动力电池领域的研究热点。然而,利用搅拌槽反应器制备高分散、球形度优异的小尺寸富镍前驱体仍是一大挑战。因此,澄清反应器结构参数和共沉淀法操作条件对超小粒径前驱体结晶特性的影响机理是十分必要的。本文采用计算流体力学模拟的方法研究了叶轮类型、叶轮标高和挡板数量对反应器内混合效率的影响。该系统分析确定了确保均匀流场分布的内部组件的最佳组合。在优化的反应器结构参数下,优化的共沉淀法工艺参数成功制备了具有优异球形度和结晶度的超小粒径前驱体。所得单晶正极材料具有良好的电化学性能。本研究为超小粒径富镍单晶前驱体的工业化生产提供了理论基础和工艺优化指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized synthesis of ultra-small particle size Ni0.94Co0.04Mn0.02(OH)2 precursors for nickel-rich single-crystal cathode materials via reactor configuration and process parameter modulation
Nickel-rich single-crystal cathode materials have become a research hotspot in power battery. However, preparing highly dispersed Nickel-rich small-sized precursors with excellent sphericity using stirred tank reactors remains a major challenge. Therefore, it is essential to clarify the influence mechanisms of reactor structural parameters and co-precipitation operating condition on the crystalline characteristics of ultra-small particle size precursors. In this study, computational fluid dynamics simulations were employed to elucidate the impact of impeller type, impeller elevation, and baffle quantity on mixing efficiency within the reactor. This systematic analysis identifies the optimal combination of internal components that ensures uniform flow field distribution. Under optimal reactor structural parameters, optimized co-precipitation process parameters enabled the successful preparation of ultra-small particle size precursor with excellent sphericity and crystallinity. The derived single-crystal cathode material demonstrated good electrochemical performance. This research provides theoretical foundation and process optimization guidance for the industrial production of ultra-small particle size nickel-rich single-crystal precursors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信