可调谐双层WS2-WSe2和WS2-MoS2横向异质结构的自供电光电探测器

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-08-12 DOI:10.1039/D5NR01628B
Yinghao Chen, Baihui Zhang, Shunhui Zhang, Zhikang Ao, Xiang Lan, Ruofan Yang, Jianing Xie, Wenkui Wen, Yang Du, Wentao Lv, Luyao Wang, Junjie Jin, Zhengwei Zhang and Fangping Ouyang
{"title":"可调谐双层WS2-WSe2和WS2-MoS2横向异质结构的自供电光电探测器","authors":"Yinghao Chen, Baihui Zhang, Shunhui Zhang, Zhikang Ao, Xiang Lan, Ruofan Yang, Jianing Xie, Wenkui Wen, Yang Du, Wentao Lv, Luyao Wang, Junjie Jin, Zhengwei Zhang and Fangping Ouyang","doi":"10.1039/D5NR01628B","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional lateral heterostructures based on transition metal dichalcogenides (TMDs) are promising for optoelectronics due to their layer thickness-dependent properties. Bilayer structures, in particular, offer advantages like enhanced electron mobility and improved stability. However, precisely controlling layer growth in these heterostructures remains a challenge. We report a simple two-step chemical vapor deposition (CVD) method for growing bilayer WS<small><sub>2</sub></small>–WSe<small><sub>2</sub></small> and WS<small><sub>2</sub></small>–MoS<small><sub>2</sub></small> lateral heterostructures. By strategically positioning a bilayer WS<small><sub>2</sub></small> template to create temperature gradients, we manipulate the supersaturation of the second material, enabling precise control over the epitaxial width ratio on layer growth. Raman spectroscopy, photoluminescence (PL), and transmission electron microscopy (TEM) confirm coherent lattice continuity and chemically abrupt interfaces. The resulting WS<small><sub>2</sub></small>–WSe<small><sub>2</sub></small> heterostructure exhibits high-performance self-powered photodetection (responsivity of 30.31 mA W<small><sup>−1</sup></small>, detectivity of 2.42 × 10<small><sup>8</sup></small> Jones and fast response time &lt;20 ms under 638 nm laser illumination, respectively). This performance is attributed to the type-II band alignment-induced built-in electric field and the high-quality interface. This work provides novel perspectives on the growth mechanism of bilayer lateral heterostructures and highlights their potential for advanced optoelectronic applications.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 34","pages":" 19928-19938"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable bilayer WS2–WSe2 and WS2–MoS2 lateral heterostructures for self-powered photodetectors\",\"authors\":\"Yinghao Chen, Baihui Zhang, Shunhui Zhang, Zhikang Ao, Xiang Lan, Ruofan Yang, Jianing Xie, Wenkui Wen, Yang Du, Wentao Lv, Luyao Wang, Junjie Jin, Zhengwei Zhang and Fangping Ouyang\",\"doi\":\"10.1039/D5NR01628B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional lateral heterostructures based on transition metal dichalcogenides (TMDs) are promising for optoelectronics due to their layer thickness-dependent properties. Bilayer structures, in particular, offer advantages like enhanced electron mobility and improved stability. However, precisely controlling layer growth in these heterostructures remains a challenge. We report a simple two-step chemical vapor deposition (CVD) method for growing bilayer WS<small><sub>2</sub></small>–WSe<small><sub>2</sub></small> and WS<small><sub>2</sub></small>–MoS<small><sub>2</sub></small> lateral heterostructures. By strategically positioning a bilayer WS<small><sub>2</sub></small> template to create temperature gradients, we manipulate the supersaturation of the second material, enabling precise control over the epitaxial width ratio on layer growth. Raman spectroscopy, photoluminescence (PL), and transmission electron microscopy (TEM) confirm coherent lattice continuity and chemically abrupt interfaces. The resulting WS<small><sub>2</sub></small>–WSe<small><sub>2</sub></small> heterostructure exhibits high-performance self-powered photodetection (responsivity of 30.31 mA W<small><sup>−1</sup></small>, detectivity of 2.42 × 10<small><sup>8</sup></small> Jones and fast response time &lt;20 ms under 638 nm laser illumination, respectively). This performance is attributed to the type-II band alignment-induced built-in electric field and the high-quality interface. This work provides novel perspectives on the growth mechanism of bilayer lateral heterostructures and highlights their potential for advanced optoelectronic applications.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 34\",\"pages\":\" 19928-19938\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01628b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01628b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于过渡金属二硫族化合物(TMDs)的二维横向异质结构由于其层厚度相关的特性而在光电子学领域具有广阔的应用前景。特别是双层结构,具有增强电子迁移率和提高稳定性等优点。然而,精确控制这些异质结构中的层生长仍然是一个挑战。我们报道了一种简单的两步化学气相沉积(CVD)方法来生长双层WS2-WSe2和WS2-MoS2横向异质结构。通过策略性地定位双层WS2模板来产生温度梯度,我们操纵第二种材料的过饱和,从而精确控制层生长的外延宽度比。通过拉曼光谱,光致发光(PL)和透射电子显微镜(TEM)的表征证实了原子相干和化学突变界面。所得到的WS2-WSe2异质结构具有高性能的自供电光探测性能(在638 nm激光照射下,高响应率为1.94 A/W,探测率为1.58 × 1010 Jones,响应时间为20 ms)。这种性能归功于ii型波段对准诱导的内置电场和高质量的接口。这项工作为研究双层横向异质结构的生长机制提供了新的视角,并突出了其在先进光电应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable bilayer WS2–WSe2 and WS2–MoS2 lateral heterostructures for self-powered photodetectors

Tunable bilayer WS2–WSe2 and WS2–MoS2 lateral heterostructures for self-powered photodetectors

Two-dimensional lateral heterostructures based on transition metal dichalcogenides (TMDs) are promising for optoelectronics due to their layer thickness-dependent properties. Bilayer structures, in particular, offer advantages like enhanced electron mobility and improved stability. However, precisely controlling layer growth in these heterostructures remains a challenge. We report a simple two-step chemical vapor deposition (CVD) method for growing bilayer WS2–WSe2 and WS2–MoS2 lateral heterostructures. By strategically positioning a bilayer WS2 template to create temperature gradients, we manipulate the supersaturation of the second material, enabling precise control over the epitaxial width ratio on layer growth. Raman spectroscopy, photoluminescence (PL), and transmission electron microscopy (TEM) confirm coherent lattice continuity and chemically abrupt interfaces. The resulting WS2–WSe2 heterostructure exhibits high-performance self-powered photodetection (responsivity of 30.31 mA W−1, detectivity of 2.42 × 108 Jones and fast response time <20 ms under 638 nm laser illumination, respectively). This performance is attributed to the type-II band alignment-induced built-in electric field and the high-quality interface. This work provides novel perspectives on the growth mechanism of bilayer lateral heterostructures and highlights their potential for advanced optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信