葡萄糖介导的喷雾热解法制备无定形氧化镍空心微球的研究

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zixuan Guo, Fengyu Lai, Bowen Song, Shubo Wang, Harishchandra Singh, Parisa Talebi, Lin Zhu, Yuran Niu, Graham King, Yucheng Huang and Baoyou Geng
{"title":"葡萄糖介导的喷雾热解法制备无定形氧化镍空心微球的研究","authors":"Zixuan Guo, Fengyu Lai, Bowen Song, Shubo Wang, Harishchandra Singh, Parisa Talebi, Lin Zhu, Yuran Niu, Graham King, Yucheng Huang and Baoyou Geng","doi":"10.1039/D5EE01802A","DOIUrl":null,"url":null,"abstract":"<p >Developing high-performance, low-cost oxygen evolution reaction (OER) catalysts is crucial for advancing anion exchange membrane water electrolysis (AEMWE) in large-scale industrial green hydrogen production. Herein, We report a glucose-mediated spray pyrolysis method for synthesizing amorphous NiFe bimetal oxide hollow microspheres (A-NiFeO<small><sub><em>x</em></sub></small>) with controlled crystallinity, hierarchical porosity, and atomic-level compositional uniformity. Glucose acts as a dynamic template, guiding hollow structure formation through a self-limiting gas expansion mechanism and stabilizing the amorphous phase <em>via</em> kinetic trapping. The optimized A-NiFeO<small><sub><em>x</em></sub></small>-400 catalyst achieves ultralow overpotentials of 248 mV at 10 mA cm<small><sup>−2</sup></small>, 274 mV at 50 mA cm<small><sup>−2</sup></small>, and 288 mV at 100 mA cm<small><sup>−2</sup></small>, outperforming both its crystalline counterparts and commercial RuO<small><sub>2</sub></small>. Operando spectroscopic analysis confirms that A-NiFeO<small><sub><em>x</em></sub></small>-400 primarily follows the adsorbate evolution mechanism (AEM) under high current densities. Density functional theory (DFT) calculations show that structural amorphization induces localized charge redistribution around Fe centers, lowering the OER energy barrier by 0.72 eV through enhanced *OOH adsorption. In practical AEMWE systems, A-NiFeO<small><sub><em>x</em></sub></small>-400 achieves an unprecedented industrial current density of 10 A cm<small><sup>−2</sup></small> at 3.56 V, while maintaining remarkable stability with approximately 1.25% activity decay over 800 h operation at 1 A cm<small><sup>−2</sup></small>. This method is scalable across 11 transition metal oxides and produces over 10 grams in 4 hours. By integrating atomic-scale electronic engineering with industrial manufacturability, it establishes a model for designing next-generation electrocatalysts for gigawatt-scale hydrogen production.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 18","pages":" 8549-8563"},"PeriodicalIF":30.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable synthesis of amorphous NiFe oxide hollow microspheres via glucose-mediated spray pyrolysis for industrial hydrogen production\",\"authors\":\"Zixuan Guo, Fengyu Lai, Bowen Song, Shubo Wang, Harishchandra Singh, Parisa Talebi, Lin Zhu, Yuran Niu, Graham King, Yucheng Huang and Baoyou Geng\",\"doi\":\"10.1039/D5EE01802A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing high-performance, low-cost oxygen evolution reaction (OER) catalysts is crucial for advancing anion exchange membrane water electrolysis (AEMWE) in large-scale industrial green hydrogen production. Herein, We report a glucose-mediated spray pyrolysis method for synthesizing amorphous NiFe bimetal oxide hollow microspheres (A-NiFeO<small><sub><em>x</em></sub></small>) with controlled crystallinity, hierarchical porosity, and atomic-level compositional uniformity. Glucose acts as a dynamic template, guiding hollow structure formation through a self-limiting gas expansion mechanism and stabilizing the amorphous phase <em>via</em> kinetic trapping. The optimized A-NiFeO<small><sub><em>x</em></sub></small>-400 catalyst achieves ultralow overpotentials of 248 mV at 10 mA cm<small><sup>−2</sup></small>, 274 mV at 50 mA cm<small><sup>−2</sup></small>, and 288 mV at 100 mA cm<small><sup>−2</sup></small>, outperforming both its crystalline counterparts and commercial RuO<small><sub>2</sub></small>. Operando spectroscopic analysis confirms that A-NiFeO<small><sub><em>x</em></sub></small>-400 primarily follows the adsorbate evolution mechanism (AEM) under high current densities. Density functional theory (DFT) calculations show that structural amorphization induces localized charge redistribution around Fe centers, lowering the OER energy barrier by 0.72 eV through enhanced *OOH adsorption. In practical AEMWE systems, A-NiFeO<small><sub><em>x</em></sub></small>-400 achieves an unprecedented industrial current density of 10 A cm<small><sup>−2</sup></small> at 3.56 V, while maintaining remarkable stability with approximately 1.25% activity decay over 800 h operation at 1 A cm<small><sup>−2</sup></small>. This method is scalable across 11 transition metal oxides and produces over 10 grams in 4 hours. By integrating atomic-scale electronic engineering with industrial manufacturability, it establishes a model for designing next-generation electrocatalysts for gigawatt-scale hydrogen production.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 18\",\"pages\":\" 8549-8563\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee01802a\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee01802a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能、低成本的析氧反应(OER)催化剂是推进阴离子交换膜电解(AEMWE)大规模工业绿色制氢的关键。本文报道了一种葡萄糖介导的喷雾热解方法,用于合成无定形NiFe双金属氧化物空心微球(a - nifeox),该方法具有可控制的结晶度、分层孔隙度和原子级组成均匀性。葡萄糖作为一个动态模板,通过自我限制的气体膨胀机制引导空心结构的形成,并通过动力学捕获稳定非晶相。优化后的A-NiFeOx-400催化剂在10 mA cm-2下的过电位为248 mV, 50 mA cm-2下的过电位为274 mV, 100 mA cm-2下的过电位为288 mV,优于晶体催化剂和商用RuO2。Operando光谱分析证实,A-NiFeOx-400在高电流密度下主要遵循吸附质演化机制(AEM)。密度泛函理论(DFT)计算表明,结构非晶化导致Fe中心附近的局部电荷重新分布,通过增强*OOH吸附使OER能垒降低0.72 eV。在实际的AEMWE系统中,A- nifeox -400在3.56 V时达到了前所未有的10 A cm-2的工业电流密度,同时保持了卓越的稳定性,在1 A cm-2下运行800小时,活度衰减约为1.25%。该方法可扩展到11种过渡金属氧化物,并在4小时内生产超过10克。通过将原子级电子工程与工业可制造性相结合,建立了用于设计下一代千兆瓦级制氢电催化剂的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scalable synthesis of amorphous NiFe oxide hollow microspheres via glucose-mediated spray pyrolysis for industrial hydrogen production

Scalable synthesis of amorphous NiFe oxide hollow microspheres via glucose-mediated spray pyrolysis for industrial hydrogen production

Developing high-performance, low-cost oxygen evolution reaction (OER) catalysts is crucial for advancing anion exchange membrane water electrolysis (AEMWE) in large-scale industrial green hydrogen production. Herein, We report a glucose-mediated spray pyrolysis method for synthesizing amorphous NiFe bimetal oxide hollow microspheres (A-NiFeOx) with controlled crystallinity, hierarchical porosity, and atomic-level compositional uniformity. Glucose acts as a dynamic template, guiding hollow structure formation through a self-limiting gas expansion mechanism and stabilizing the amorphous phase via kinetic trapping. The optimized A-NiFeOx-400 catalyst achieves ultralow overpotentials of 248 mV at 10 mA cm−2, 274 mV at 50 mA cm−2, and 288 mV at 100 mA cm−2, outperforming both its crystalline counterparts and commercial RuO2. Operando spectroscopic analysis confirms that A-NiFeOx-400 primarily follows the adsorbate evolution mechanism (AEM) under high current densities. Density functional theory (DFT) calculations show that structural amorphization induces localized charge redistribution around Fe centers, lowering the OER energy barrier by 0.72 eV through enhanced *OOH adsorption. In practical AEMWE systems, A-NiFeOx-400 achieves an unprecedented industrial current density of 10 A cm−2 at 3.56 V, while maintaining remarkable stability with approximately 1.25% activity decay over 800 h operation at 1 A cm−2. This method is scalable across 11 transition metal oxides and produces over 10 grams in 4 hours. By integrating atomic-scale electronic engineering with industrial manufacturability, it establishes a model for designing next-generation electrocatalysts for gigawatt-scale hydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信