利用多氧化态溴(Br-/BrO-/BrO3-)氧化还原化学的无毒高压锌-溴电池

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mingyang Cao, Mingqiang Li, Weiye Bai, Godlaveeti Sreemivasa Kumar, Ning Wang, Yanheng Yin
{"title":"利用多氧化态溴(Br-/BrO-/BrO3-)氧化还原化学的无毒高压锌-溴电池","authors":"Mingyang Cao, Mingqiang Li, Weiye Bai, Godlaveeti Sreemivasa Kumar, Ning Wang, Yanheng Yin","doi":"10.1039/d5ta04869a","DOIUrl":null,"url":null,"abstract":"Zinc-bromine batteries suffer from significant bromine gas leakage, posing serious safety hazards. This work introduces a novel Br-/BrO-/BrO3- triple redox system within alkaline zinc-bromide batteries. This system facilitates the electrochemical conversion of Br-/BrO3- to the mediator species BrO- via murexide organic chelation under alkaline conditions. The coordinated three-phase redox transition enables a multi-electron transfer mechanism, achieving a discharge plateau of 2.0 V while effectively suppressing Br2 release. Through a synergistic electrolyte design incorporating acidic substances (oxalic acid) and urea-based complexes (murexide), bromine is confined to non-volatile ionic states, effectively mitigating persistent bromine leakage. The optimized system delivers an area capacity of 2.2 mAh/cm2 and maintains 83% capacity retention over 800 cycles, demonstrating the practical viability of complete bromine containment in aqueous alkaline batteries. This system-level approach advances fundamental principles for designing multi-electron redox pairs in aqueous batteries and provides key insights into halogen-mediated reaction mechanisms relevant to electrocatalysis and environmental remediation.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"6 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nontoxic, High-Voltage Zinc-Bromine Battery Utilizing Multi-Oxidation-State Bromine (Br-/BrO-/BrO3-) Redox Chemistry\",\"authors\":\"Mingyang Cao, Mingqiang Li, Weiye Bai, Godlaveeti Sreemivasa Kumar, Ning Wang, Yanheng Yin\",\"doi\":\"10.1039/d5ta04869a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc-bromine batteries suffer from significant bromine gas leakage, posing serious safety hazards. This work introduces a novel Br-/BrO-/BrO3- triple redox system within alkaline zinc-bromide batteries. This system facilitates the electrochemical conversion of Br-/BrO3- to the mediator species BrO- via murexide organic chelation under alkaline conditions. The coordinated three-phase redox transition enables a multi-electron transfer mechanism, achieving a discharge plateau of 2.0 V while effectively suppressing Br2 release. Through a synergistic electrolyte design incorporating acidic substances (oxalic acid) and urea-based complexes (murexide), bromine is confined to non-volatile ionic states, effectively mitigating persistent bromine leakage. The optimized system delivers an area capacity of 2.2 mAh/cm2 and maintains 83% capacity retention over 800 cycles, demonstrating the practical viability of complete bromine containment in aqueous alkaline batteries. This system-level approach advances fundamental principles for designing multi-electron redox pairs in aqueous batteries and provides key insights into halogen-mediated reaction mechanisms relevant to electrocatalysis and environmental remediation.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ta04869a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta04869a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锌溴电池存在严重的溴气体泄漏,存在严重的安全隐患。本文介绍了一种新型碱性溴化锌电池中的Br-/BrO-/BrO3-三重氧化还原体系。该体系有利于在碱性条件下通过脲类有机螯合将Br-/BrO3-电化学转化为中间体BrO-。协调的三相氧化还原转变实现了多电子转移机制,在有效抑制Br2释放的同时实现了2.0 V的放电平台。通过结合酸性物质(草酸)和脲基配合物(脲氧化物)的协同电解质设计,溴被限制在非挥发性离子状态,有效地减轻了持久性溴泄漏。优化后的系统提供了2.2 mAh/cm2的面积容量,并在800次循环中保持83%的容量保持,证明了在水性碱性电池中完全包含溴的实际可行性。这种系统级方法推进了设计水性电池中多电子氧化还原对的基本原则,并为与电催化和环境修复相关的卤素介导反应机制提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nontoxic, High-Voltage Zinc-Bromine Battery Utilizing Multi-Oxidation-State Bromine (Br-/BrO-/BrO3-) Redox Chemistry
Zinc-bromine batteries suffer from significant bromine gas leakage, posing serious safety hazards. This work introduces a novel Br-/BrO-/BrO3- triple redox system within alkaline zinc-bromide batteries. This system facilitates the electrochemical conversion of Br-/BrO3- to the mediator species BrO- via murexide organic chelation under alkaline conditions. The coordinated three-phase redox transition enables a multi-electron transfer mechanism, achieving a discharge plateau of 2.0 V while effectively suppressing Br2 release. Through a synergistic electrolyte design incorporating acidic substances (oxalic acid) and urea-based complexes (murexide), bromine is confined to non-volatile ionic states, effectively mitigating persistent bromine leakage. The optimized system delivers an area capacity of 2.2 mAh/cm2 and maintains 83% capacity retention over 800 cycles, demonstrating the practical viability of complete bromine containment in aqueous alkaline batteries. This system-level approach advances fundamental principles for designing multi-electron redox pairs in aqueous batteries and provides key insights into halogen-mediated reaction mechanisms relevant to electrocatalysis and environmental remediation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信