DNA聚合酶主动和顺序地取代单链DNA结合蛋白

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Longfu Xu, Shikai Jin, Mia Urem, Seung-Joo Lee, Meindert H. Lamers, Xun Chen, Peter G. Wolynes, Gijs J. L. Wuite
{"title":"DNA聚合酶主动和顺序地取代单链DNA结合蛋白","authors":"Longfu Xu, Shikai Jin, Mia Urem, Seung-Joo Lee, Meindert H. Lamers, Xun Chen, Peter G. Wolynes, Gijs J. L. Wuite","doi":"10.1038/s41467-025-62531-1","DOIUrl":null,"url":null,"abstract":"<p>Single-stranded DNA-binding proteins (SSBs) protect transiently exposed ssDNA, yet how DNA polymerase (DNAp) displaces them during replication remains unclear. Using single-molecule force spectroscopy, dual-color imaging, and molecular dynamics simulations on bacteriophage T7 DNAp and SSB, we investigated molecular mechanisms underlying SSB displacement. T7 SSB modulates replication in a force-dependent manner: enhancing it at low tension by preventing secondary structures while impeding it at high tension. Dual-color imaging shows SSBs remain stationary as DNAp advances, supporting a sequential displacement model. Molecular dynamics suggests that DNAp actively lowers the SSB dissociation energy barrier through interactions mediated by the SSB C-terminal tail. FRET confirms close protein proximity during encounters. Optimal replication requires SSB saturation of ssDNA, establishing a delicate balance between protection and efficiency. This spatiotemporal coordination between DNAp and SSB is critical for resolving molecular collisions and may represent a general mechanism for resolving molecular collisions, ensuring both processivity and genomic integrity.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"740 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA polymerase actively and sequentially displaces single-stranded DNA-binding proteins\",\"authors\":\"Longfu Xu, Shikai Jin, Mia Urem, Seung-Joo Lee, Meindert H. Lamers, Xun Chen, Peter G. Wolynes, Gijs J. L. Wuite\",\"doi\":\"10.1038/s41467-025-62531-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single-stranded DNA-binding proteins (SSBs) protect transiently exposed ssDNA, yet how DNA polymerase (DNAp) displaces them during replication remains unclear. Using single-molecule force spectroscopy, dual-color imaging, and molecular dynamics simulations on bacteriophage T7 DNAp and SSB, we investigated molecular mechanisms underlying SSB displacement. T7 SSB modulates replication in a force-dependent manner: enhancing it at low tension by preventing secondary structures while impeding it at high tension. Dual-color imaging shows SSBs remain stationary as DNAp advances, supporting a sequential displacement model. Molecular dynamics suggests that DNAp actively lowers the SSB dissociation energy barrier through interactions mediated by the SSB C-terminal tail. FRET confirms close protein proximity during encounters. Optimal replication requires SSB saturation of ssDNA, establishing a delicate balance between protection and efficiency. This spatiotemporal coordination between DNAp and SSB is critical for resolving molecular collisions and may represent a general mechanism for resolving molecular collisions, ensuring both processivity and genomic integrity.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"740 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62531-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62531-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单链DNA结合蛋白(SSBs)保护短暂暴露的ssDNA,但DNA聚合酶(DNAp)在复制过程中如何取代它们仍不清楚。利用单分子力谱、双色成像和分子动力学模拟,研究了噬菌体T7 DNAp和SSB位移的分子机制。T7 SSB以力依赖的方式调节复制:在低张力下通过阻止二级结构来增强复制,而在高张力下阻碍复制。双色成像显示,随着dna的推进,ssb保持静止,支持序列位移模型。分子动力学表明,DNAp通过SSB c端尾介导的相互作用,积极降低SSB的解离能垒。FRET证实在接触过程中蛋白质接近。最佳复制需要SSB饱和的ssDNA,在保护和效率之间建立微妙的平衡。DNAp和SSB之间的这种时空协调对于解决分子碰撞至关重要,可能代表了解决分子碰撞的一般机制,确保了遗传过程和基因组完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DNA polymerase actively and sequentially displaces single-stranded DNA-binding proteins

DNA polymerase actively and sequentially displaces single-stranded DNA-binding proteins

Single-stranded DNA-binding proteins (SSBs) protect transiently exposed ssDNA, yet how DNA polymerase (DNAp) displaces them during replication remains unclear. Using single-molecule force spectroscopy, dual-color imaging, and molecular dynamics simulations on bacteriophage T7 DNAp and SSB, we investigated molecular mechanisms underlying SSB displacement. T7 SSB modulates replication in a force-dependent manner: enhancing it at low tension by preventing secondary structures while impeding it at high tension. Dual-color imaging shows SSBs remain stationary as DNAp advances, supporting a sequential displacement model. Molecular dynamics suggests that DNAp actively lowers the SSB dissociation energy barrier through interactions mediated by the SSB C-terminal tail. FRET confirms close protein proximity during encounters. Optimal replication requires SSB saturation of ssDNA, establishing a delicate balance between protection and efficiency. This spatiotemporal coordination between DNAp and SSB is critical for resolving molecular collisions and may represent a general mechanism for resolving molecular collisions, ensuring both processivity and genomic integrity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信