Thomas Decker, Marcelin Gallezot, Sven Florian Kerstan, Alessio Paesano, Anke Ginter, Wadim Wormsbecher
{"title":"量子密钥分发作为量子机器学习任务","authors":"Thomas Decker, Marcelin Gallezot, Sven Florian Kerstan, Alessio Paesano, Anke Ginter, Wadim Wormsbecher","doi":"10.1038/s41534-025-01088-9","DOIUrl":null,"url":null,"abstract":"<p>We propose considering Quantum Key Distribution (QKD) protocols as a use case for Quantum Machine Learning (QML) algorithms. We define and investigate the QML task of optimizing eavesdropping attacks on the quantum circuit implementation of the BB84 protocol. QKD protocols are well understood and solid security proofs exist enabling an easy evaluation of the QML model performance. The power of easy-to-implement QML techniques is shown by finding the explicit circuit for optimal individual attacks in a noise-free setting. For the noisy setting we find, to the best of our knowledge, a new cloning algorithm, which can outperform known cloning methods. Finally, we present a QML construction of a collective attack by using classical information from QKD post-processing within the QML algorithm.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"27 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum key distribution as a quantum machine learning task\",\"authors\":\"Thomas Decker, Marcelin Gallezot, Sven Florian Kerstan, Alessio Paesano, Anke Ginter, Wadim Wormsbecher\",\"doi\":\"10.1038/s41534-025-01088-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose considering Quantum Key Distribution (QKD) protocols as a use case for Quantum Machine Learning (QML) algorithms. We define and investigate the QML task of optimizing eavesdropping attacks on the quantum circuit implementation of the BB84 protocol. QKD protocols are well understood and solid security proofs exist enabling an easy evaluation of the QML model performance. The power of easy-to-implement QML techniques is shown by finding the explicit circuit for optimal individual attacks in a noise-free setting. For the noisy setting we find, to the best of our knowledge, a new cloning algorithm, which can outperform known cloning methods. Finally, we present a QML construction of a collective attack by using classical information from QKD post-processing within the QML algorithm.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01088-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01088-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Quantum key distribution as a quantum machine learning task
We propose considering Quantum Key Distribution (QKD) protocols as a use case for Quantum Machine Learning (QML) algorithms. We define and investigate the QML task of optimizing eavesdropping attacks on the quantum circuit implementation of the BB84 protocol. QKD protocols are well understood and solid security proofs exist enabling an easy evaluation of the QML model performance. The power of easy-to-implement QML techniques is shown by finding the explicit circuit for optimal individual attacks in a noise-free setting. For the noisy setting we find, to the best of our knowledge, a new cloning algorithm, which can outperform known cloning methods. Finally, we present a QML construction of a collective attack by using classical information from QKD post-processing within the QML algorithm.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.