Xi Chen, Jiahao Yao, Yong Lu, Yixin Li, Zhenhua Yan, Kai Zhang, Jun Chen
{"title":"有机锂电池共轭羰基聚合物电极研究进展","authors":"Xi Chen, Jiahao Yao, Yong Lu, Yixin Li, Zhenhua Yan, Kai Zhang, Jun Chen","doi":"10.1016/j.progpolymsci.2025.102012","DOIUrl":null,"url":null,"abstract":"<div><div>Conjugated carbonyl polymers (CCPs) have emerged as a promising class of organic electrode materials for high-performance organic lithium batteries, offering unique advantages such as structural versatility, tunable electrochemical properties, sustainability, and high theoretical capacity. These materials address key limitations of traditional inorganic electrodes, including resource scarcity and environmental concerns. Their conjugated π-systems enhance electron transport, and polymerised structures improve anti-dissolution and thermal stability. However, challenges such as low conductivity, limited carbonyl utilization, high synthesis costs, and compatibility issues with existing battery systems hinder their practical application. This review comprehensively summarizes the research progress of CCPs in organic lithium batteries, focusing on strategies to optimize their structure and performance through molecular engineering, morphology control, composite synthesis, and electrode fabrication. It analyzes the fundamental relationships between molecular structure, electrochemical performance, and practical applicability, highlighting advancements in enhancing conductivity, cycle stability, and rate capability. Furthermore, the review discusses current challenges, including cost reduction of synthesis, improvement of structural stability, and optimisation of interfaces, alongside potential solutions and future research directions. By integrating insights from computational simulations, experimental studies, and practical application considerations, this work underscores the potential of CCPs to advance next-generation high-energy-density, sustainable organic lithium batteries, paving the way for their broader adoption in energy storage technologies.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"168 ","pages":"Article 102012"},"PeriodicalIF":26.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on conjugated carbonyl polymer electrodes for organic lithium batteries\",\"authors\":\"Xi Chen, Jiahao Yao, Yong Lu, Yixin Li, Zhenhua Yan, Kai Zhang, Jun Chen\",\"doi\":\"10.1016/j.progpolymsci.2025.102012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conjugated carbonyl polymers (CCPs) have emerged as a promising class of organic electrode materials for high-performance organic lithium batteries, offering unique advantages such as structural versatility, tunable electrochemical properties, sustainability, and high theoretical capacity. These materials address key limitations of traditional inorganic electrodes, including resource scarcity and environmental concerns. Their conjugated π-systems enhance electron transport, and polymerised structures improve anti-dissolution and thermal stability. However, challenges such as low conductivity, limited carbonyl utilization, high synthesis costs, and compatibility issues with existing battery systems hinder their practical application. This review comprehensively summarizes the research progress of CCPs in organic lithium batteries, focusing on strategies to optimize their structure and performance through molecular engineering, morphology control, composite synthesis, and electrode fabrication. It analyzes the fundamental relationships between molecular structure, electrochemical performance, and practical applicability, highlighting advancements in enhancing conductivity, cycle stability, and rate capability. Furthermore, the review discusses current challenges, including cost reduction of synthesis, improvement of structural stability, and optimisation of interfaces, alongside potential solutions and future research directions. By integrating insights from computational simulations, experimental studies, and practical application considerations, this work underscores the potential of CCPs to advance next-generation high-energy-density, sustainable organic lithium batteries, paving the way for their broader adoption in energy storage technologies.</div></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"168 \",\"pages\":\"Article 102012\"},\"PeriodicalIF\":26.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670025000917\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670025000917","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Research progress on conjugated carbonyl polymer electrodes for organic lithium batteries
Conjugated carbonyl polymers (CCPs) have emerged as a promising class of organic electrode materials for high-performance organic lithium batteries, offering unique advantages such as structural versatility, tunable electrochemical properties, sustainability, and high theoretical capacity. These materials address key limitations of traditional inorganic electrodes, including resource scarcity and environmental concerns. Their conjugated π-systems enhance electron transport, and polymerised structures improve anti-dissolution and thermal stability. However, challenges such as low conductivity, limited carbonyl utilization, high synthesis costs, and compatibility issues with existing battery systems hinder their practical application. This review comprehensively summarizes the research progress of CCPs in organic lithium batteries, focusing on strategies to optimize their structure and performance through molecular engineering, morphology control, composite synthesis, and electrode fabrication. It analyzes the fundamental relationships between molecular structure, electrochemical performance, and practical applicability, highlighting advancements in enhancing conductivity, cycle stability, and rate capability. Furthermore, the review discusses current challenges, including cost reduction of synthesis, improvement of structural stability, and optimisation of interfaces, alongside potential solutions and future research directions. By integrating insights from computational simulations, experimental studies, and practical application considerations, this work underscores the potential of CCPs to advance next-generation high-energy-density, sustainable organic lithium batteries, paving the way for their broader adoption in energy storage technologies.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.