Linsey K. Rodenbach, Jason M. Underwood, Ngoc Thanh Mai Tran, Alireza R. Panna, Molly P. Andersen, Zachary S. Barcikowski, Shamith U. Payagala, Peng Zhang, Lixuan Tai, Kang L. Wang, Dean G. Jarrett, Randolph E. Elmquist, David B. Newell, Albert F. Rigosi, David Goldhaber-Gordon
{"title":"从量子国际单位制统一实现的电量","authors":"Linsey K. Rodenbach, Jason M. Underwood, Ngoc Thanh Mai Tran, Alireza R. Panna, Molly P. Andersen, Zachary S. Barcikowski, Shamith U. Payagala, Peng Zhang, Lixuan Tai, Kang L. Wang, Dean G. Jarrett, Randolph E. Elmquist, David B. Newell, Albert F. Rigosi, David Goldhaber-Gordon","doi":"10.1038/s41928-025-01421-2","DOIUrl":null,"url":null,"abstract":"In the revised International System of Units (SI), the ohm and the volt are realized from the von Klitzing constant and the Josephson constant, and a practical realization of the ampere is possible by applying Ohm’s law directly to the quantum Hall and Josephson effects. As a result, it is possible to create an instrument capable of realizing all three primary electrical units, but the development of such a system remains challenging. Here we report a unified realization of the volt, ohm and ampere by integrating a quantum anomalous Hall resistor (QAHR) and a programmable Josephson voltage standard (PJVS) in a single cryostat. Our system has a quantum voltage output that ranges from 0.24 mV to 6.5 mV with combined relative uncertainties down to 3 μV V−1. The QAHR provides a realization of the ohm at zero magnetic field with uncertainties near 1 μΩ Ω−1. We use the QAHR to convert a longitudinal current to a quantized Hall voltage and then directly compare that against the PJVS to realize the ampere. We determine currents in the range of 9.33–252 nA, and our lowest uncertainty is 4.3 μA A−1 at 83.9 nA. For other current values, a systematic error that ranges from −10 μA A−1 to −30 μA A−1 is present due to the imperfect isolation of the PJVS microwave bias. A unified realization of the volt, ohm and ampere can be achieved by integrating a quantum anomalous Hall resistor and a programmable Josephson voltage standard in a single cryostat.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 8","pages":"663-671"},"PeriodicalIF":40.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified realization of electrical quantities from the quantum International System of Units\",\"authors\":\"Linsey K. Rodenbach, Jason M. Underwood, Ngoc Thanh Mai Tran, Alireza R. Panna, Molly P. Andersen, Zachary S. Barcikowski, Shamith U. Payagala, Peng Zhang, Lixuan Tai, Kang L. Wang, Dean G. Jarrett, Randolph E. Elmquist, David B. Newell, Albert F. Rigosi, David Goldhaber-Gordon\",\"doi\":\"10.1038/s41928-025-01421-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the revised International System of Units (SI), the ohm and the volt are realized from the von Klitzing constant and the Josephson constant, and a practical realization of the ampere is possible by applying Ohm’s law directly to the quantum Hall and Josephson effects. As a result, it is possible to create an instrument capable of realizing all three primary electrical units, but the development of such a system remains challenging. Here we report a unified realization of the volt, ohm and ampere by integrating a quantum anomalous Hall resistor (QAHR) and a programmable Josephson voltage standard (PJVS) in a single cryostat. Our system has a quantum voltage output that ranges from 0.24 mV to 6.5 mV with combined relative uncertainties down to 3 μV V−1. The QAHR provides a realization of the ohm at zero magnetic field with uncertainties near 1 μΩ Ω−1. We use the QAHR to convert a longitudinal current to a quantized Hall voltage and then directly compare that against the PJVS to realize the ampere. We determine currents in the range of 9.33–252 nA, and our lowest uncertainty is 4.3 μA A−1 at 83.9 nA. For other current values, a systematic error that ranges from −10 μA A−1 to −30 μA A−1 is present due to the imperfect isolation of the PJVS microwave bias. A unified realization of the volt, ohm and ampere can be achieved by integrating a quantum anomalous Hall resistor and a programmable Josephson voltage standard in a single cryostat.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"8 8\",\"pages\":\"663-671\"},\"PeriodicalIF\":40.9000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-025-01421-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-025-01421-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A unified realization of electrical quantities from the quantum International System of Units
In the revised International System of Units (SI), the ohm and the volt are realized from the von Klitzing constant and the Josephson constant, and a practical realization of the ampere is possible by applying Ohm’s law directly to the quantum Hall and Josephson effects. As a result, it is possible to create an instrument capable of realizing all three primary electrical units, but the development of such a system remains challenging. Here we report a unified realization of the volt, ohm and ampere by integrating a quantum anomalous Hall resistor (QAHR) and a programmable Josephson voltage standard (PJVS) in a single cryostat. Our system has a quantum voltage output that ranges from 0.24 mV to 6.5 mV with combined relative uncertainties down to 3 μV V−1. The QAHR provides a realization of the ohm at zero magnetic field with uncertainties near 1 μΩ Ω−1. We use the QAHR to convert a longitudinal current to a quantized Hall voltage and then directly compare that against the PJVS to realize the ampere. We determine currents in the range of 9.33–252 nA, and our lowest uncertainty is 4.3 μA A−1 at 83.9 nA. For other current values, a systematic error that ranges from −10 μA A−1 to −30 μA A−1 is present due to the imperfect isolation of the PJVS microwave bias. A unified realization of the volt, ohm and ampere can be achieved by integrating a quantum anomalous Hall resistor and a programmable Josephson voltage standard in a single cryostat.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.