用于药物降解和CO2转化的工程TiO2的镁热还原和掺杂策略

IF 11.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Junguang Gao, Hashem O. Alsaab, Masoud Habibi Zare, Saeed Shirazian
{"title":"用于药物降解和CO2转化的工程TiO2的镁热还原和掺杂策略","authors":"Junguang Gao, Hashem O. Alsaab, Masoud Habibi Zare, Saeed Shirazian","doi":"10.1038/s41545-025-00508-9","DOIUrl":null,"url":null,"abstract":"<p>Pharmaceutical contaminants in water pose a significant ecological risk and require advanced treatment solutions. In this study, the strategy of oxygen-deficient TiO<sub>2-x</sub> and doping is evaluated for its photocatalytic efficiency under visible light for pharmaceutical pollutant degradation, seawater purification and green fuel production. The oxygen vacancies reduced the band gap and improved visible light absorption and charge separation, allowing TiO<sub>2-x</sub> to achieve almost complete degradation of aspirin within 6 h. Mechanistic studies (EPR, LC-MS) revealed •O₂⁻ and h⁺ as the dominant reactive species. The TiO<sub>2-x</sub> (1:1) catalyst showed excellent stability and reusability. Modified catalysts (TiO<sub>2</sub>-Cu, TiO<sub>2</sub>-GO) were also evaluated, with TiO<sub>2</sub>-Cu and TiO<sub>2-x</sub> (1:1) showing superior removal of organic pollutants (&gt;90%), natural organic matter (NOM) and divalent ions (Mg<sup>2+</sup>, Ca<sup>2+</sup>) in seawater. While efficient degradation reduced biotoxicity (95% EC50 reduction in the Microtox assay), incomplete mineralization in some systems resulted in toxic intermediates, highlighting the need for combined chemical and toxicity assessments. In addition, TiO<sub>2-x</sub> (1:1) and TiO<sub>2</sub>-GO showed increased activity in CO<sub>2</sub> reduction. This work highlights oxygen vacancy engineering as a promising strategy for visible-light-driven environmental photocatalysis.</p><figure></figure>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"11 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesiothermal reduction and doping strategies in engineered TiO2 for pharmaceutical degradation and CO2 conversion\",\"authors\":\"Junguang Gao, Hashem O. Alsaab, Masoud Habibi Zare, Saeed Shirazian\",\"doi\":\"10.1038/s41545-025-00508-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pharmaceutical contaminants in water pose a significant ecological risk and require advanced treatment solutions. In this study, the strategy of oxygen-deficient TiO<sub>2-x</sub> and doping is evaluated for its photocatalytic efficiency under visible light for pharmaceutical pollutant degradation, seawater purification and green fuel production. The oxygen vacancies reduced the band gap and improved visible light absorption and charge separation, allowing TiO<sub>2-x</sub> to achieve almost complete degradation of aspirin within 6 h. Mechanistic studies (EPR, LC-MS) revealed •O₂⁻ and h⁺ as the dominant reactive species. The TiO<sub>2-x</sub> (1:1) catalyst showed excellent stability and reusability. Modified catalysts (TiO<sub>2</sub>-Cu, TiO<sub>2</sub>-GO) were also evaluated, with TiO<sub>2</sub>-Cu and TiO<sub>2-x</sub> (1:1) showing superior removal of organic pollutants (&gt;90%), natural organic matter (NOM) and divalent ions (Mg<sup>2+</sup>, Ca<sup>2+</sup>) in seawater. While efficient degradation reduced biotoxicity (95% EC50 reduction in the Microtox assay), incomplete mineralization in some systems resulted in toxic intermediates, highlighting the need for combined chemical and toxicity assessments. In addition, TiO<sub>2-x</sub> (1:1) and TiO<sub>2</sub>-GO showed increased activity in CO<sub>2</sub> reduction. This work highlights oxygen vacancy engineering as a promising strategy for visible-light-driven environmental photocatalysis.</p><figure></figure>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00508-9\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00508-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

水中的药物污染物构成重大的生态风险,需要先进的处理解决方案。在本研究中,评估了缺氧TiO2-x和掺杂策略在可见光下对药物污染物降解、海水净化和绿色燃料生产的光催化效率。氧空位减少了带隙,改善了可见光吸收和电荷分离,使TiO2-x在6小时内几乎完全降解阿司匹林。机制研究(EPR, LC-MS)显示•O₂⁻和h⁺是主要的反应物质。TiO2-x(1:1)催化剂具有良好的稳定性和可重复使用性。对改性催化剂(TiO2-Cu, TiO2-GO)进行了评价,TiO2-Cu和TiO2-x(1:1)对海水中的有机污染物(>90%)、天然有机物(NOM)和二价离子(Mg2+, Ca2+)具有较好的去除效果。虽然有效降解降低了生物毒性(Microtox试验中EC50降低95%),但某些系统中的不完全矿化会导致有毒中间体,因此需要进行化学和毒性综合评估。此外,TiO2-x(1:1)和TiO2-GO的CO2还原活性增强。这项工作强调了氧空位工程作为一种有前途的可见光驱动环境光催化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnesiothermal reduction and doping strategies in engineered TiO2 for pharmaceutical degradation and CO2 conversion

Magnesiothermal reduction and doping strategies in engineered TiO2 for pharmaceutical degradation and CO2 conversion

Pharmaceutical contaminants in water pose a significant ecological risk and require advanced treatment solutions. In this study, the strategy of oxygen-deficient TiO2-x and doping is evaluated for its photocatalytic efficiency under visible light for pharmaceutical pollutant degradation, seawater purification and green fuel production. The oxygen vacancies reduced the band gap and improved visible light absorption and charge separation, allowing TiO2-x to achieve almost complete degradation of aspirin within 6 h. Mechanistic studies (EPR, LC-MS) revealed •O₂⁻ and h⁺ as the dominant reactive species. The TiO2-x (1:1) catalyst showed excellent stability and reusability. Modified catalysts (TiO2-Cu, TiO2-GO) were also evaluated, with TiO2-Cu and TiO2-x (1:1) showing superior removal of organic pollutants (>90%), natural organic matter (NOM) and divalent ions (Mg2+, Ca2+) in seawater. While efficient degradation reduced biotoxicity (95% EC50 reduction in the Microtox assay), incomplete mineralization in some systems resulted in toxic intermediates, highlighting the need for combined chemical and toxicity assessments. In addition, TiO2-x (1:1) and TiO2-GO showed increased activity in CO2 reduction. This work highlights oxygen vacancy engineering as a promising strategy for visible-light-driven environmental photocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信