Fernando J Gómez-Ruiz, Stefano Gherardini and Ricardo Puebla
{"title":"通过平均场临界点的挤压生成:功统计、不可逆性和临界指纹","authors":"Fernando J Gómez-Ruiz, Stefano Gherardini and Ricardo Puebla","doi":"10.1088/2058-9565/adf5de","DOIUrl":null,"url":null,"abstract":"Understanding the dynamical consequences of quantum phase transitions on thermodynamical quantities, such as work statistics and entropy production, is one of the most intriguing aspect of quantum many-body systems, pinpointing the emergence of irreversibility to critical features. In this work, we investigate the critical fingerprints appearing in these key thermodynamical quantities for a mean-field critical system undergoing a finite-time cycle, starting from a thermal state at a generic inverse temperature. In contrast to non-zero dimensional many-body systems, the presence of a mean-field critical point in a finite-time cycle leads to constant irreversible work even in the limit of infinitely slow driving. This links with the fact that a slow finite-time cycle results in a constant amount of squeezing, which enables us to derive analytical expressions for the work statistics and irreversible entropy, depending solely on the mean-field critical exponents and the functional form of the control parameter near the critical point. We find that the probability of observing negative work values, corresponding to negative irreversible entropy, is inversely proportional to the time the system remains near to the critical point, and this trend becomes less pronounced the lower the temperature of the initial thermal state. Finally, we determine the irreversibility traits under squeezing generation at zero-temperature using the relative entropy of coherence.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"38 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Squeezing generation crossing a mean-field critical point: work statistics, irreversibility, and critical fingerprints\",\"authors\":\"Fernando J Gómez-Ruiz, Stefano Gherardini and Ricardo Puebla\",\"doi\":\"10.1088/2058-9565/adf5de\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the dynamical consequences of quantum phase transitions on thermodynamical quantities, such as work statistics and entropy production, is one of the most intriguing aspect of quantum many-body systems, pinpointing the emergence of irreversibility to critical features. In this work, we investigate the critical fingerprints appearing in these key thermodynamical quantities for a mean-field critical system undergoing a finite-time cycle, starting from a thermal state at a generic inverse temperature. In contrast to non-zero dimensional many-body systems, the presence of a mean-field critical point in a finite-time cycle leads to constant irreversible work even in the limit of infinitely slow driving. This links with the fact that a slow finite-time cycle results in a constant amount of squeezing, which enables us to derive analytical expressions for the work statistics and irreversible entropy, depending solely on the mean-field critical exponents and the functional form of the control parameter near the critical point. We find that the probability of observing negative work values, corresponding to negative irreversible entropy, is inversely proportional to the time the system remains near to the critical point, and this trend becomes less pronounced the lower the temperature of the initial thermal state. Finally, we determine the irreversibility traits under squeezing generation at zero-temperature using the relative entropy of coherence.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adf5de\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf5de","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Squeezing generation crossing a mean-field critical point: work statistics, irreversibility, and critical fingerprints
Understanding the dynamical consequences of quantum phase transitions on thermodynamical quantities, such as work statistics and entropy production, is one of the most intriguing aspect of quantum many-body systems, pinpointing the emergence of irreversibility to critical features. In this work, we investigate the critical fingerprints appearing in these key thermodynamical quantities for a mean-field critical system undergoing a finite-time cycle, starting from a thermal state at a generic inverse temperature. In contrast to non-zero dimensional many-body systems, the presence of a mean-field critical point in a finite-time cycle leads to constant irreversible work even in the limit of infinitely slow driving. This links with the fact that a slow finite-time cycle results in a constant amount of squeezing, which enables us to derive analytical expressions for the work statistics and irreversible entropy, depending solely on the mean-field critical exponents and the functional form of the control parameter near the critical point. We find that the probability of observing negative work values, corresponding to negative irreversible entropy, is inversely proportional to the time the system remains near to the critical point, and this trend becomes less pronounced the lower the temperature of the initial thermal state. Finally, we determine the irreversibility traits under squeezing generation at zero-temperature using the relative entropy of coherence.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.