线粒体E3连接酶MAPL sumoylate Drp1促进椎间盘退变过程中的线粒体裂变

IF 15 1区 医学 Q1 CELL & TISSUE ENGINEERING
Zhidi Lin, Xiao Lu, Guangyu Xu, Jian Song, Hongli Wang, Xinlei Xia, Feizhou Lu, Jianyuan Jiang, Wei Zhu, Zuochong Yu, Xiaosheng Ma, Fei Zou
{"title":"线粒体E3连接酶MAPL sumoylate Drp1促进椎间盘退变过程中的线粒体裂变","authors":"Zhidi Lin, Xiao Lu, Guangyu Xu, Jian Song, Hongli Wang, Xinlei Xia, Feizhou Lu, Jianyuan Jiang, Wei Zhu, Zuochong Yu, Xiaosheng Ma, Fei Zou","doi":"10.1038/s41413-025-00449-6","DOIUrl":null,"url":null,"abstract":"<p>Intervertebral disc degeneration (IVDD) is the primary contributor to a range of spinal diseases. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission has recently been identified as a new cause of nucleus pulposus cell (NPC) death and IVDD, but the underlying mechanisms remain unclear. Although the effects of Drp1 phosphorylation in IVDD have been studied, it is currently unknown if small ubiquitin-like modifications (SUMOylation) of Drp1 regulate IVDD. This study aimed to investigate the functions and mechanisms of mitochondria-anchored protein ligase (MAPL), a mitochondrial SUMO E3 ligase, during IVDD progression. The expression of genes related to SUMOylation and mitochondrial dynamics in TNF-α-stimulated NPCs was analysed via RNA sequencing. The levels of total and mitochondrial SUMO1 conjugates were elevated with MAPL upregulation in TNF-α-treated NPCs. Additionally, mitochondrial fragmentation and dysfunction were induced by TNF-α stimulation. MAPL overexpression promoted mitochondrial SUMOylation and SUMO1 modification of Drp1, thereby facilitating the mitochondrial translocation of Drp1 and mitochondrial fission. MAPL-induced ROS accumulation and ΔΨm loss led to increased NPC apoptosis. Mutation of the SUMO-acceptor lysine residues of Drp1 hindered its SUMOylation and rescued the mitochondrial phenotypes caused by MAPL. SENP5 overexpression phenocopied MAPL silencing, negatively modulating the SUMO1 modification of Drp1 and mitochondrial fission in NPCs. In a rat IVDD model, forced expression of MAPL by using an adeno-associated virus (AAV) vector aggravated IVD tissue damage, whereas the knockdown of MAPL delayed IVDD progression. Our findings highlight the importance of SUMOylation in IVDD. The inhibition of MAPL-mediated Drp1 SUMOylation alleviates mitochondrial fission and limits IVDD development, providing a potential strategy for IVDD treatment.</p><figure></figure>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"38 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mitochondrial E3 ligase MAPL SUMOylates Drp1 to facilitate mitochondrial fission in intervertebral disc degeneration\",\"authors\":\"Zhidi Lin, Xiao Lu, Guangyu Xu, Jian Song, Hongli Wang, Xinlei Xia, Feizhou Lu, Jianyuan Jiang, Wei Zhu, Zuochong Yu, Xiaosheng Ma, Fei Zou\",\"doi\":\"10.1038/s41413-025-00449-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intervertebral disc degeneration (IVDD) is the primary contributor to a range of spinal diseases. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission has recently been identified as a new cause of nucleus pulposus cell (NPC) death and IVDD, but the underlying mechanisms remain unclear. Although the effects of Drp1 phosphorylation in IVDD have been studied, it is currently unknown if small ubiquitin-like modifications (SUMOylation) of Drp1 regulate IVDD. This study aimed to investigate the functions and mechanisms of mitochondria-anchored protein ligase (MAPL), a mitochondrial SUMO E3 ligase, during IVDD progression. The expression of genes related to SUMOylation and mitochondrial dynamics in TNF-α-stimulated NPCs was analysed via RNA sequencing. The levels of total and mitochondrial SUMO1 conjugates were elevated with MAPL upregulation in TNF-α-treated NPCs. Additionally, mitochondrial fragmentation and dysfunction were induced by TNF-α stimulation. MAPL overexpression promoted mitochondrial SUMOylation and SUMO1 modification of Drp1, thereby facilitating the mitochondrial translocation of Drp1 and mitochondrial fission. MAPL-induced ROS accumulation and ΔΨm loss led to increased NPC apoptosis. Mutation of the SUMO-acceptor lysine residues of Drp1 hindered its SUMOylation and rescued the mitochondrial phenotypes caused by MAPL. SENP5 overexpression phenocopied MAPL silencing, negatively modulating the SUMO1 modification of Drp1 and mitochondrial fission in NPCs. In a rat IVDD model, forced expression of MAPL by using an adeno-associated virus (AAV) vector aggravated IVD tissue damage, whereas the knockdown of MAPL delayed IVDD progression. Our findings highlight the importance of SUMOylation in IVDD. The inhibition of MAPL-mediated Drp1 SUMOylation alleviates mitochondrial fission and limits IVDD development, providing a potential strategy for IVDD treatment.</p><figure></figure>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-025-00449-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00449-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

椎间盘退变(IVDD)是一系列脊柱疾病的主要诱因。动力蛋白相关蛋白1 (Drp1)介导的线粒体分裂最近被确定为髓核细胞(NPC)死亡和IVDD的新原因,但其潜在机制尚不清楚。虽然已经研究了Drp1磷酸化在IVDD中的作用,但目前尚不清楚Drp1的小泛素样修饰(SUMOylation)是否调节IVDD。本研究旨在探讨线粒体锚定蛋白连接酶(MAPL),一种线粒体SUMO E3连接酶,在IVDD进展过程中的功能和机制。通过RNA测序分析TNF-α刺激的NPCs中SUMOylation和线粒体动力学相关基因的表达。在TNF-α-处理的npc中,总SUMO1偶联物和线粒体SUMO1偶联物的水平随着MAPL的上调而升高。此外,TNF-α刺激可诱导线粒体断裂和功能障碍。MAPL过表达促进线粒体SUMOylation和Drp1的SUMO1修饰,从而促进Drp1的线粒体易位和线粒体裂变。mapl诱导的ROS积累和ΔΨm丢失导致鼻咽癌细胞凋亡增加。Drp1的sumo受体赖氨酸残基突变阻碍了其sumo化,挽救了MAPL引起的线粒体表型。SENP5过表达导致MAPL沉默,负向调节NPCs中Drp1的SUMO1修饰和线粒体分裂。在大鼠IVDD模型中,使用腺相关病毒(AAV)载体强制表达MAPL加重了IVD组织损伤,而敲低MAPL则延迟了IVDD的进展。我们的发现强调了SUMOylation在IVDD中的重要性。抑制mapll介导的Drp1 summoylation可减轻线粒体分裂并限制IVDD的发展,为IVDD治疗提供了一种潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The mitochondrial E3 ligase MAPL SUMOylates Drp1 to facilitate mitochondrial fission in intervertebral disc degeneration

The mitochondrial E3 ligase MAPL SUMOylates Drp1 to facilitate mitochondrial fission in intervertebral disc degeneration

Intervertebral disc degeneration (IVDD) is the primary contributor to a range of spinal diseases. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission has recently been identified as a new cause of nucleus pulposus cell (NPC) death and IVDD, but the underlying mechanisms remain unclear. Although the effects of Drp1 phosphorylation in IVDD have been studied, it is currently unknown if small ubiquitin-like modifications (SUMOylation) of Drp1 regulate IVDD. This study aimed to investigate the functions and mechanisms of mitochondria-anchored protein ligase (MAPL), a mitochondrial SUMO E3 ligase, during IVDD progression. The expression of genes related to SUMOylation and mitochondrial dynamics in TNF-α-stimulated NPCs was analysed via RNA sequencing. The levels of total and mitochondrial SUMO1 conjugates were elevated with MAPL upregulation in TNF-α-treated NPCs. Additionally, mitochondrial fragmentation and dysfunction were induced by TNF-α stimulation. MAPL overexpression promoted mitochondrial SUMOylation and SUMO1 modification of Drp1, thereby facilitating the mitochondrial translocation of Drp1 and mitochondrial fission. MAPL-induced ROS accumulation and ΔΨm loss led to increased NPC apoptosis. Mutation of the SUMO-acceptor lysine residues of Drp1 hindered its SUMOylation and rescued the mitochondrial phenotypes caused by MAPL. SENP5 overexpression phenocopied MAPL silencing, negatively modulating the SUMO1 modification of Drp1 and mitochondrial fission in NPCs. In a rat IVDD model, forced expression of MAPL by using an adeno-associated virus (AAV) vector aggravated IVD tissue damage, whereas the knockdown of MAPL delayed IVDD progression. Our findings highlight the importance of SUMOylation in IVDD. The inhibition of MAPL-mediated Drp1 SUMOylation alleviates mitochondrial fission and limits IVDD development, providing a potential strategy for IVDD treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信