{"title":"协调灵活性和效率:内侧内嗅皮层代表一个组成的认知地图","authors":"Payam Piray, Nathaniel D. Daw","doi":"10.1038/s41467-025-62733-7","DOIUrl":null,"url":null,"abstract":"<p>The influential concept of cognitive maps envisions that the brain builds mental representations of objects, barriers, and goals. Computational models show how these representations guide goal-directed behavior, such as planning novel routes to maximize rewards. One key feature of flexible cognitive representations is compositionality, the ability to build complex structures by recombining simpler parts. However, how this applies to neural representations of cognitive maps and map-based planning remains unclear. Compositionality can be difficult to reconcile with efficient planning, as reusing components may limit efficiency. Here, we propose a novel computational model for efficiently creating and planning with compositional predictive maps, which successfully reproduces response fields in the medial entorhinal cortex, particularly object vector cells and grid cells. The model treats each object as an alteration to a baseline map linked to open space, creating predictive maps by combining object-related representations compositionally, providing insights into brain processes supporting efficient, flexible planning.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"741 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconciling flexibility and efficiency: medial entorhinal cortex represents a compositional cognitive map\",\"authors\":\"Payam Piray, Nathaniel D. Daw\",\"doi\":\"10.1038/s41467-025-62733-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The influential concept of cognitive maps envisions that the brain builds mental representations of objects, barriers, and goals. Computational models show how these representations guide goal-directed behavior, such as planning novel routes to maximize rewards. One key feature of flexible cognitive representations is compositionality, the ability to build complex structures by recombining simpler parts. However, how this applies to neural representations of cognitive maps and map-based planning remains unclear. Compositionality can be difficult to reconcile with efficient planning, as reusing components may limit efficiency. Here, we propose a novel computational model for efficiently creating and planning with compositional predictive maps, which successfully reproduces response fields in the medial entorhinal cortex, particularly object vector cells and grid cells. The model treats each object as an alteration to a baseline map linked to open space, creating predictive maps by combining object-related representations compositionally, providing insights into brain processes supporting efficient, flexible planning.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"741 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62733-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62733-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reconciling flexibility and efficiency: medial entorhinal cortex represents a compositional cognitive map
The influential concept of cognitive maps envisions that the brain builds mental representations of objects, barriers, and goals. Computational models show how these representations guide goal-directed behavior, such as planning novel routes to maximize rewards. One key feature of flexible cognitive representations is compositionality, the ability to build complex structures by recombining simpler parts. However, how this applies to neural representations of cognitive maps and map-based planning remains unclear. Compositionality can be difficult to reconcile with efficient planning, as reusing components may limit efficiency. Here, we propose a novel computational model for efficiently creating and planning with compositional predictive maps, which successfully reproduces response fields in the medial entorhinal cortex, particularly object vector cells and grid cells. The model treats each object as an alteration to a baseline map linked to open space, creating predictive maps by combining object-related representations compositionally, providing insights into brain processes supporting efficient, flexible planning.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.